Epistasis -

Epistasis

Methods and Protocols

Ka-Chun Wong (Herausgeber)

Buch | Hardcover
402 Seiten
2021 | 1st ed. 2021
Springer-Verlag New York Inc.
978-1-0716-0946-0 (ISBN)
192,59 inkl. MwSt
This volume explores methods and protocols for detecting epistasis from genetic data. Chapters provide methods and protocols demonstrating approaches to identify epistasis, genetic epistasis testing, genome-wide epistatic SNP networks, epistasis detection through machine learning, and complex interaction analysis using trigenic synthetic genetic array (τ-SGA). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.



 



Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.



 

"Simulating Evolution in Asexual Populations with Epistasis” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Mass-based Protein Phylogenetic Approach to Identify Epistasis.- SNPInt-GPU: Tool for epistasis testing with multiple methods and GPU acceleration.- Epistasis-based Feature Selection Algorithm.- W-test for Genetic Epistasis Testing.- The Combined Analysis of Pleiotropy and Epistasis (CAPE).- Two-Stage Testing for Epistasis: Screening and Veri_cation.- Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.- Phenotype Prediction under Epistasis.- Simulating Evolution in Asexual Populations with Epistasis.- Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.- Brief survey on Machine Learning in Epistasis.- First-Order Correction of Statistical Significance for Screening Two-Way Epistatic Interactions.- Gene-Environment Interaction:  AVariable Selection Perspective.- Using C-JAMP to Investigate Epistasis and Pleiotropy.- Identifying the Significant Change of Gene Expression in Genomic Series Data.- Analyzing High-Order Epistasis from Genotype-phenotype Maps Using ’Epistasis’ Package.- Deep Neural Networks for Epistatic Sequences Analysis.- Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.- A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.- Epistasis Detection Based on Epi-GTBN.- Epistasis Analysis: Classification through Machine Learning Methods.- Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.- Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.

Erscheinungsdatum
Reihe/Serie Methods in Molecular Biology ; 2212
Zusatzinfo 85 Illustrations, color; 82 Illustrations, black and white; X, 402 p. 167 illus., 85 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete
Studium 2. Studienabschnitt (Klinik) Humangenetik
ISBN-10 1-0716-0946-7 / 1071609467
ISBN-13 978-1-0716-0946-0 / 9781071609460
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine sehr persönliche Geschichte | Der New York Times-Bestseller

von Siddhartha Mukherjee

Buch | Softcover (2023)
Ullstein Taschenbuch Verlag
21,99
Die revolutionäre Medizin von morgen (Lifespan)

von David A. Sinclair; Matthew D. LaPlante

Buch | Softcover (2020)
DuMont Buchverlag
16,00