Für diesen Artikel ist leider kein Bild verfügbar.

Large Deviations for Discrete-Time Processes with Averaging

Buch | Hardcover
192 Seiten
1993
VSP International Science Publishers (Verlag)
978-90-6764-148-7 (ISBN)
219,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Based on the Cramer-Chernoff theorem, which deals with the "rough" logarithmic asymptotics of the distribution of sums of independent, identically random variables, this work primarily approaches the extensions of this theory to dependent and non-Markovian cases on function spaces.
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information.

This book is mainly based on the Cramér--Chernoff renowned theorem, which deals with the 'rough' logarithmic asymptotics of the distribution of sums of independent, identically distributed random variables. The authors approach primarily the extensions of this theory to dependent, and in particular, nonmarkovian cases on function spaces. Recurrent algorithms of identification and adaptive control form the main examples behind the large deviation problems in this volume.

The first part of the book exploits some ideas and concepts of the martingale approach, especially the concept of the stochastic exponential. The second part of the book covers Freindlin's approach, based on the Frobenius-type theorems for positive operators, which prove to be effective for the cases in consideration.

INTRODUCTION TO LARGE DEVIATIONS
Cramér-type results (the classical Cramér theorem; the extensions of Cramér's theorem)

Large deviations on the space of probability measures

Application to statistical mechanics

Basic large deviations concepts

Large deviations for sums of independent and identically distributed variables in function space

Applications to recursive estimation and control theory

LARGE DEVIATIONS FOR NON-MARKOVIAN RECURSIVE SCHEME WITH ADDITITIVE 'WHITE NOISE'

LARGE DEVIATION FOR THE RECURSIVE SCHEME WITH STATIONARY DISTURBANCES
Large deviations for the sums of stationary

Large deviations for recursive scheme with the Wold-type disturbances

GENERALIZATION OF CRAMÉR'S THEOREM
Large deviations for sums of stationary sequence

Large deviations for sums of semimartingales

MIXING FOR MARKOV PROCESSES
Definitions

Main results

Preliminary results

Proofs of theorems 5.1--5.6

Mixing coefficients for recursive procedure

THE AVERAGING PRINCIPLE FOR SOME RECURSIVE SCHEMES

NORMAL DEVIATIONS

LARGE DEVIATIONS FOR MARKOV PROCESSES
Introduction

Examples

Markovian noncompact case

Auxiliary results

Proofs of theorems 8.6--8.8

Proof of theorem 8.9

LARGE DEVIATIONS FOR STATIONARY PROCESSES
Compact nonsingular case

Noncompact nonsingular case

LARGE DEVIATIONS FOR EMPIRICAL MEASURES
Introduction

Markov chain with Doeblin-type condition

Noncompact Markov case

Stationary compact case

Stationary noncompact case

LARGE DEVIATIONS FOR EMPIRICAL MEASURES
Compact case

Noncompact case

Erscheint lt. Verlag 1.8.1993
Verlagsort Zeist
Sprache englisch
Gewicht 480 g
Themenwelt Mathematik / Informatik Mathematik
Medizin / Pharmazie Medizinische Fachgebiete Schmerztherapie
ISBN-10 90-6764-148-0 / 9067641480
ISBN-13 978-90-6764-148-7 / 9789067641487
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Neurophysiologie, Injektionstechnik und Therapievorschläge

von Lorenz Fischer

Buch | Hardcover (2019)
Thieme (Verlag)
85,00

von David Butler; Lorimer G. Moseley

Buch | Hardcover (2016)
Springer (Verlag)
64,99
Ein Ratgeber für Betroffene und Angehörige

von Hans-Günter Nobis; Roman Rolke; Toni Graf-Baumann

Buch | Softcover (2020)
Springer Berlin (Verlag)
24,99