Marine-Derived Biomaterials for Tissue Engineering Applications -

Marine-Derived Biomaterials for Tissue Engineering Applications (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XX, 550 Seiten
Springer Singapore (Verlag)
978-981-13-8855-2 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the latest advances in marine structures and related biomaterials for applications in both soft- and hard-tissue engineering, as well as controlled drug delivery. It explores marine structures consisting of materials with a wide variety of characteristics that warrant their use as biomaterials. It also underlines the importance of exploiting natural marine resources for the sustainable development of novel biomaterials and discusses the resulting environmental and economic benefits. 
 
The book is divided into three major sections: the first covers the clinical application of marine biomaterials for drug delivery in tissue engineering, while the other two examine the clinical significance of marine structures in soft- and hard-tissue engineering, respectively. Focusing on clinically oriented applications, it is a valuable resource for dentists, oral and maxillofacial surgeons, orthopedic surgeons, and students and researchers in the field of tissue engineering.   


This book presents the latest advances in marine structures and related biomaterials for applications in both soft- and hard-tissue engineering, as well as controlled drug delivery. It explores marine structures consisting of materials with a wide variety of characteristics that warrant their use as biomaterials. It also underlines the importance of exploiting natural marine resources for the sustainable development of novel biomaterials and discusses the resulting environmental and economic benefits.  The book is divided into three major sections: the first covers the clinical application of marine biomaterials for drug delivery in tissue engineering, while the other two examine the clinical significance of marine structures in soft- and hard-tissue engineering, respectively. Focusing on clinically oriented applications, it is a valuable resource for dentists, oral and maxillofacial surgeons, orthopedic surgeons, and students and researchers in the field of tissue engineering.   

Preface 6
Contents 9
Editors and Contributors 12
1 Thoughts and Tribulations on Bioceramics and Marine Structures 20
1.1 Introduction 21
1.2 History and Classification of Bioceramics 23
1.3 Productions of Bioceramics and Nanobioceramics 24
1.3.1 Nanocomposites 25
1.4 Liposome-Based Delivery Vehicles 26
1.5 Bioceramic-Based Delivery Vehicles 27
1.5.1 Nano-hydroxyapatite Powders for Medical Applications 28
1.5.2 Calcite and Calcium Phosphate 29
1.5.3 Mineral-Coated Polysaccharide Microspheres and Nanospheres 31
1.6 Concluding Remarks 36
References 38
2 Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering 45
2.1 Introduction 46
2.2 Marine Sponges as Outstanding Biomodel 48
2.2.1 Phylum Porifera 48
2.2.2 Hierarchical Structures in Marine Sponges 49
2.2.3 Components of Marine Sponges Skeletons 51
2.3 Biomaterials 55
2.3.1 Bioceramics 55
2.3.2 Composites 57
2.3.3 Hydrogels 58
2.3.4 Porous Marine Sponge as Natural Scaffold 59
2.4 Biomedical Application 60
2.5 Future Remarks 62
References 63
3 Marine Derived Biomaterials for Bone Regeneration and Tissue Engineering: Learning from Nature 69
3.1 Introduction 69
3.1.1 Biomimetics 71
3.2 Scaffold Designs 73
3.2.1 Natural Evolution 74
3.3 Marine Skeletons 76
3.3.1 Sea Urchin: Echinoderm Skeletal Elements 76
3.4 Coral Skeletons 78
3.4.1 Properties and Applications 80
3.4.2 Producing Bioactive Calcium Phosphates from Coral Exoskeletons 81
3.5 Marine Shells 82
3.5.1 Nacre 82
3.5.2 Foraminafera Shells (Coral Sand) 85
3.6 Marine Sponges 86
3.7 Supply 88
3.8 Concluding Remarks 89
References 91
Marine Sources for Biomaterials 97
4 Nanobiomaterials for Bone Tissue Engineering 98
4.1 Introduction 98
4.2 Bone Biology 99
4.3 Application of Chitosan Nanocomposite in Tissue Engineering 102
4.4 Application of Nanohydroxyapatite-Based Nanocomposite for Bone Tissue Engineering 104
4.5 Application of Diatom-Based Nanocomposite for Bone Tissue Engineering 106
4.5.1 Purification of Biosilica from Diatom 106
4.6 Conclusion 108
References 108
5 Marine-Based Biomaterials for Tissue Engineering Applications 115
5.1 Introduction 115
5.2 Tissue Engineering Applications of Marine-Based Biomaterials 116
5.2.1 Hard Tissue Applications 116
5.2.2 Skin Tissue Application 119
5.2.3 Cardiovascular Tissue Applications 119
5.2.4 Liver Tissue Applications 120
5.3 Drug Delivery Vehicles 121
5.3.1 Marine Structures as Drug Carrier 121
5.3.2 Scaffold for Drug Delivery 123
5.3.3 Inflammatory Drug Delivery 124
5.4 Conclusions 124
References 124
6 Production and Characterization of Calcium Phosphates from Marine Structures: The Fundamentals Basics 128
6.1 Introduction 129
6.1.1 Hydroxyapatite and Calcium Phosphates 129
6.1.2 Hydroxyapatite Derived from Marine Sources 130
6.2 Synthesis and Preparation Methods 133
6.2.1 Hotplate Method 133
6.2.2 Ultrasound Method 133
6.2.3 Thermal Calcination Method 133
6.2.4 Microwave Method 134
6.2.5 Hydrothermal Method 135
6.2.6 Alkali Treatment Method 136
6.3 Characterization Methods 136
6.3.1 Thermogravimetric Analysis 136
6.3.2 Microscopy and Morphology 136
6.3.3 XRD and Phase Determination 139
6.3.4 FT-IR Analysis 142
6.4 Concluding Remarks 144
References 146
7 Marine-Based Calcium Phosphates from Hard Coral and Calcified Algae for Biomedical Applications 151
7.1 Introduction 152
7.2 Bone and Its Structure 153
7.3 Marine-Based Calcareous Exoskeletons 155
7.4 Production of Bioceramics from Marine-Based Sources 156
7.5 Biomedical Applications of Marine-Based Calcium Phosphates 157
7.5.1 Tubipora musica 158
7.5.2 Halimeda cylindracea 158
7.5.3 Foraminifera 160
7.5.4 Porites Hard Coral 162
7.6 Concluding Remarks 163
References 164
Marine Sources for Drug Delivery 168
8 Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry 169
8.1 Introduction 169
8.2 Local Treatment in Dentistry and Chitosan 171
8.3 Applications of Chitosan in Dental Diseases 173
8.3.1 Antimicrobial Activity and Delivery of Antimicrobial Drugs 173
8.3.2 Tissue Engineering 175
8.3.3 Treatment of Periodontitis 177
8.4 Conclusion and Future Perspectives 178
References 184
9 Hydroxyapatite Scaffolds Produced from Cuttlefish Bone via Hydrothermal Transformation for Application in Tissue Engineering and Drug Delivery Systems 191
9.1 Introduction 192
9.2 Cuttlefish Bone 195
9.3 ??p Fabrication and Characterization 198
9.3.1 ??p Scaffolds Produced via Hydrothermal Transformation of Cuttlefish Bone 198
9.3.2 Characterization of HAp Scaffolds 199
9.3.3 Fluorine-Substituted HAp 200
9.3.4 HAp Osteoinduction 200
9.3.5 HAp Biodegradation 201
9.4 In Vitro Biocompatibility with Cell Cultures 202
9.5 HAp-Composite Scaffolds with Natural Biodegradable Hydrogels 203
9.5.1 Reinforcement with Alginate Hydrogel 204
9.5.2 Reinforcement with Chitosan Hydrogel 205
9.6 In Vivo Performance 207
9.7 Drug Delivery Systems 208
9.8 Concluding Remarks and Perspectives 209
References 210
10 Marine Nanopharmaceuticals for Drug Delivery and Targeting 218
10.1 Introduction 219
10.2 Biodiversity of Marine Environment 220
10.2.1 Current Nanopharmaceuticals in Clinical Application 220
10.3 Marine Nanopharmaceuticals 221
10.3.1 Untapped Potentials from Marine Organisms 224
10.4 Concluding Remarks and Future Perspective 229
References 229
11 Brown Algal Polyphenol and Its Pharmaceutical Properties 233
11.1 Introduction 234
11.2 Phlorotannins 235
11.2.1 Sources and Distribution 235
11.2.2 Structural Diversity and Classification 235
11.2.3 Biosynthesis of Phlorotannins 236
11.2.4 Physiological Properties 237
11.3 Potential Health Benefits 237
11.3.1 Antioxidant and UV-Protective Activities 237
11.3.2 Antimicrobial Activity 239
11.3.3 Anti-HIV Activity 240
11.3.4 Anti-allergic Activity 241
11.3.5 Anti-inflammatory Activity 242
11.3.6 Anti-cancer Activity 243
11.3.7 Anti-diabetic Activity 244
11.3.8 Anti-obesity 245
11.3.9 Other Biological Activities 245
11.4 Conclusion 246
References 246
Marine Sources for Tissue Engineering Scaffolds 254
12 Sponge (Porifera) Collagen for Bone Tissue Engineering 255
12.1 Introduction 256
12.2 Design Criteria of an Ideal Scaffold for Bone Tissue Engineering 257
12.3 Natural Scaffolds for Tissue Engineering 259
12.4 Porifera Collagen Bioscaffolds for Bone Tissue Engineering 261
12.4.1 Poriferan Skeletal Structure 263
12.4.2 Classification of Porifera 264
12.4.3 Analysis of Porifera for Bone Tissue Engineering 265
12.5 Characterization of Osteoblast-Seeded Sponge Skeletons In Vitro 270
12.5.1 Short Term Osteoblast Culture on Porifera 270
12.5.2 Long Term Osteoblast Culture on Porifera 271
12.6 Biocompatibility of Porifera for Bone Tissue Engineering 281
12.7 Conclusion 287
References 288
13 Chitinous Scaffolds from Marine Sponges for Tissue Engineering 292
13.1 Introduction 293
13.1.1 Chitinous Scaffolds from Marine Sponge Ianthella Basta: Prospects for Tissue Engineering 295
13.1.2 3D Chitinous Scaffolds from Marine Sponges Aplysina Aerophoba and Aplysina Fulva: Interspecies Biocompatibility with Human Cells 300
13.2 Conclusion 307
References 308
14 The Other Connective Tissue: Echinoderm Ligaments and Membranes as Decellularized Bioscaffold for Tissue Engineering 315
14.1 Introduction 315
14.2 Basis of Structural Support in Soft Connective Tissue 317
14.2.1 Overview 317
14.2.2 Structure of Collagen Fibril 318
14.2.3 Mechanism of Reinforcement 321
14.3 How Processing Bioscaffolds Affects the Scaffold Structural/Mechanical Integrity 325
14.3.1 Overview 325
14.3.2 Decellularization 326
14.3.3 Hydration 327
14.3.4 Dehydration 327
14.4 Potential Clinical Applications 328
References 330
15 Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering 334
15.1 Introduction 335
15.2 Commonly Available Marine Biomaterials in Tissue Engineering Application 336
15.2.1 Chitin and Chitosan 336
15.2.2 Alginate 337
15.2.3 Calcium Carbonate and Hydroxyapatite 337
15.2.4 Collagen 338
15.2.5 Biosilica 338
15.2.6 Fucoidan 339
15.2.7 Carrageenans 339
15.2.8 Glycosaminoglycans 339
15.2.9 Chondroitin Sulphate 340
15.2.10 Hyaluronic Acid 340
15.3 Marine Biomaterials in Bone Tissue Engineering 340
15.4 Marine Biomaterials in Dentistry or Dental Application 343
15.4.1 Oral and Maxillofacial Surgery 344
15.5 Marine Biomaterials in Cartilage Tissue Engineering 345
15.6 Marine Biomaterials in Wound Regeneration 347
15.7 Marine Biomaterials for Local Drug Delivery Applications 348
15.8 Conclusion 350
References 351
16 Composites Containing Marine Biomaterials for Bone Tissue Repair 362
16.1 Introduction 362
16.2 Chitosan 364
16.3 Hydroxyapatite, Gelatin and Alginate 365
16.4 Fabrication Methods 368
16.5 Mechanical Properties 368
16.5.1 Chitosan/Hydroxyapatite 369
16.5.2 Chitosan/Gelatin 369
16.5.3 Chitosan/Alginate 370
16.6 In Vitro Studies 370
16.6.1 Cellular Studies 370
16.6.2 Molecular Studies 374
16.7 In Vivo Studies 376
16.7.1 Chitosan/Nano-hydroxyapatite 376
16.7.2 Chitosan/Gelatin 377
16.7.3 Chitosan/Alginate 378
16.8 Conclusions 381
References 381
17 Calcified Algae for Tissue Engineering 388
17.1 Biomineralization 389
17.2 Bone 390
17.2.1 Mineral Phase 390
17.2.2 Organic Phase 391
17.2.3 Bone Architecture 391
17.2.4 Bone Remodelling 392
17.2.5 Bone Grafts 392
17.2.6 Bone Substitute Materials 393
17.2.7 Bone Tissue Engineering 394
17.3 Calcium Phosphate Bioceramics 396
17.3.1 Synthesis Methods 396
17.3.2 Synthesis from Biogenically Derived Minerals 398
17.4 Clinical Studies on Algae-Derived HAp for Bone Tissue Engineering 404
17.5 Techniques for Analysing Biogenically Derived HAp Materials 407
17.5.1 Fourier Transform Infrared Spectroscopy 407
17.5.2 X-ray Diffraction 409
17.5.3 Thermogravimetric Analysis 410
17.5.4 Scanning Electron Microscopy 411
References 411
18 Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration 418
18.1 Introduction 419
18.1.1 Bone and Its Components 420
18.1.2 Marine Biomaterials for Bone Tissue Regeneration 420
18.2 Chitosan 421
18.2.1 Physicochemical Properties 421
18.2.2 Biological Properties 422
18.2.3 Routes for Fabricating Chitosan-Based Scaffolds and Hydrogels 423
18.3 Chitosan Scaffolds for Bone Tissue Regeneration 424
18.3.1 Porosity 424
18.3.2 Swelling Property 425
18.3.3 Protein Adsorption 425
18.3.4 Biomineralization 425
18.3.5 Biodegradation 426
18.4 Chitosan-Based Biocomposite Scaffolds for Bone Tissue Regeneration 426
18.4.1 Chitosan/Nanohydroxyapatite/Nano-Silver Composite 426
18.4.2 Chitosan/Nanohydroxyapatite/Nano-Copper-Zinc Composite 427
18.4.3 Chitosan/Silicon/Zirconium Biocomposite 428
18.4.4 Chitosan/Alginate/Nano-SiO2 Composite 428
18.4.5 Chitosan/Diopside Scaffolds 429
18.4.6 Chitosan/Carboxymethyl Cellulose/Mesoporous Wollastonite Particles Scaffolds 430
18.4.7 Chitosan/Graphene Oxide Scaffolds 431
18.4.8 Chitosan-Based Biocomposite Scaffolds 432
18.4.9 Thermo-Responsive Chitosan Hydrogels for Bone Repair 433
18.4.10 Zinc-Chitosan-Glycerophosphate-Nano-HAp Hydrogels 439
18.5 Conclusions 440
References 440
19 Marine Polysaccharides: Biomedical and Tissue Engineering Applications 448
19.1 Introduction 448
19.1.1 Materials Used in Tissue Engineering 449
19.1.2 Overview of Tissue Engineering and Related Applications 450
19.2 Algal Polysaccharides—Introduction and Its Importance 452
19.2.1 Alginate from Brown Algae 452
19.2.2 Fucoidan from Brown Algae 457
19.2.3 Laminarin 463
19.2.4 Carrageenan 463
19.2.5 Ulvans 466
19.3 Marine Crustaceans: Shells from Shrimps, Crabs or Squilla Fish 468
19.3.1 Introduction to Chitin and Chitosan 468
19.3.2 Isolation and Production 469
19.3.3 Properties and Characteristics 472
19.3.4 Applications of Chitosan 474
19.3.5 Advantages, Problems, and Limitations Currently Associated with the Use of Chitosan and Chitin 485
19.4 Future Prospects in Marine Polysaccharides 485
19.4.1 Commercially Available Products 486
References 486
Marine Sources for Soft Tissue Engineering and Other Biomedical Applications 493
20 Bioactivity of Red Sea Algae for Industrial Application and Biomedical Engineering 494
20.1 Introduction 495
20.2 The Red Sea Algae 495
20.3 Chemical Composition 498
20.3.1 Proteins and Amino Acids 499
20.3.2 Minerals 500
20.3.3 Vitamins 501
20.3.4 Lipids 502
20.4 Marine Algae as a Source of Industrial Exploitable Compounds 502
20.4.1 Pharmaceutical Industries 503
20.4.2 Dentistry 503
20.4.3 Surgery 504
20.4.4 Anticancer Activities 504
20.4.5 Anti-inflammatory and Antinociceptive Properties 505
20.4.6 Cosmetic Applications 505
20.4.7 Food Industry 509
20.5 Tissue Engineering and Regenerative Medicine Applications 510
20.5.1 Marine Algae as Source of Polysaccharides 511
20.5.2 Biomaterials Applications for Tissue Engineering 513
20.5.3 Threats to the Industrial Applications of Micro- and Macro-algae 516
References 517
21 Chitin Nanomaterials and Nanocomposites for Tissue Repair 526
21.1 Introduction 526
21.2 Chitin Nanofibrils 530
21.2.1 Biological Properties and Applications 531
21.2.2 Production Methods 534
21.2.3 Biopolymers Versus Bio-Based Polymers 534
21.3 Chitin Nanocomposites 537
21.3.1 Chitin Nanocomposite and Skin Repair 541
21.4 Final Remarks 543
References 544
Index 548

Erscheint lt. Verlag 8.7.2019
Reihe/Serie Springer Series in Biomaterials Science and Engineering
Springer Series in Biomaterials Science and Engineering
Zusatzinfo XX, 550 p. 226 illus., 148 illus. in color.
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie Zellbiologie
Technik Bauwesen
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Bioceramics • Biocomposite Scaffolds • Bone tissue • Drug Delivery • Hydroxyapatite • Marine Biomaterials • Marine-Derived Biomaterials • Marine Nanopharmaceuticals • Marine Polysaccharides • Marine sponges • Nanobiomaterial • Tissue engineering
ISBN-10 981-13-8855-5 / 9811388555
ISBN-13 978-981-13-8855-2 / 9789811388552
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich