Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms - Bhabesh Deka, Sumit Datta

Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms (eBook)

A Convex Optimization Approach
eBook Download: PDF
2018 | 1st ed. 2019
XIII, 122 Seiten
Springer Singapore (Verlag)
978-981-13-3597-6 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need for the CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.



Dr. Bhabesh Deka has been an Associate Professor at the Department of Electronics and Communication Engineering (ECE) at Tezpur University, Assam, India since January 2012. He is also a Visvesvaraya Young Faculty Research Fellow (YFRF) of the Ministry of Electronics & Information Technology (MeitY), Government of India. His major research interests are image processing (particularly, inverse ill-posed problems), computer vision, compressive sensing MRI and biomedical signal analysis. He is actively engaged in the development of low-cost Internet of Things (IoT) enabled systems for mobile healthcare, high-throughput compressed sensing based techniques for rapid magnetic resonance image reconstruction, and parallel computing architectures for real-time image processing and computer vision applications. He has published a number of articles in peer-reviewed national and international journals of high repute. He is also a regular reviewer for a various leading journals, including IEEE Transactions on Image Processing, IEEE Access, IEEE Signal Processing Letters, IET Image Processing, IET Computer Vision, Biomedical Signal Processing and Control, Digital Signal Processing, and International Journal of Electronics and Communications (AEU). He is associated with a number of professional bodies and societies, like, Fellow, IETE; Senior Member, IEEE (USA); Member, IEEE Engineering in Medicine and Biology (EMB) Society (USA); and Life Member, Institution of Engineers (India).

Mr. Sumit Datta is currently pursuing his Ph.D. in the area of compressed sensing magnetic resonance image reconstruction at the Department of Electronics and Communication Engineering (ECE), Tezpur University, Assam, India. He received his B.Tech. in Electronics and Communication Engineering from National Institute of Technology Agartala (NITA), Tripura, India, in 2011 and his M.Tech. in Bioelectronics from Tezpur University in 2014. His research interests include image processing, biomedical signal and image processing, compressed sensing MRI, and parallel computing. He has published a number of articles in peer-reviewed national and international journals, such as IEEE Signal Processing Letters, IET Image Processing, Journal of Optics, and the Multimedia Tools and Applications. 


This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.

Dr. Bhabesh Deka has been an Associate Professor at the Department of Electronics and Communication Engineering (ECE) at Tezpur University, Assam, India since January 2012. He is also a Visvesvaraya Young Faculty Research Fellow (YFRF) of the Ministry of Electronics & Information Technology (MeitY), Government of India. His major research interests are image processing (particularly, inverse ill-posed problems), computer vision, compressive sensing MRI and biomedical signal analysis. He is actively engaged in the development of low-cost Internet of Things (IoT) enabled systems for mobile healthcare, high-throughput compressed sensing based techniques for rapid magnetic resonance image reconstruction, and parallel computing architectures for real-time image processing and computer vision applications. He has published a number of articles in peer-reviewed national and international journals of high repute. He is also a regular reviewer for a various leading journals, including IEEE Transactions on Image Processing, IEEE Access, IEEE Signal Processing Letters, IET Image Processing, IET Computer Vision, Biomedical Signal Processing and Control, Digital Signal Processing, and International Journal of Electronics and Communications (AEU). He is associated with a number of professional bodies and societies, like, Fellow, IETE; Senior Member, IEEE (USA); Member, IEEE Engineering in Medicine and Biology (EMB) Society (USA); and Life Member, Institution of Engineers (India). Mr. Sumit Datta is currently pursuing his Ph.D. in the area of compressed sensing magnetic resonance image reconstruction at the Department of Electronics and Communication Engineering (ECE), Tezpur University, Assam, India. He received his B.Tech. in Electronics and Communication Engineering from National Institute of Technology Agartala (NITA), Tripura, India, in 2011 and his M.Tech. in Bioelectronics from Tezpur University in 2014. His research interests include image processing, biomedical signal and image processing, compressed sensing MRI, and parallel computing. He has published a number of articles in peer-reviewed national and international journals, such as IEEE Signal Processing Letters, IET Image Processing, Journal of Optics, and the Multimedia Tools and Applications. 

1. Introduction to Compressed Sensing Magnetic Resonance Imaging.- 2. Compressed Sensing MRI Reconstruction Problem.- 3. Fast Algorithms for Compressed Sensing MRI Reconstruction.- 4. Simulation Results.- 5. Performance Evaluation and Benchmark Setting.- 6. Conclusions and Future Directions.

Erscheint lt. Verlag 29.12.2018
Reihe/Serie Springer Series on Bio- and Neurosystems
Springer Series on Bio- and Neurosystems
Zusatzinfo XIII, 122 p. 38 illus., 23 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Kernspintomographie (MRT)
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Clinical CS-MRI • Composite splitting based CS-MRI • Compressed sensing MRI • CS-MRI reconstruction algorithm • Fast L1-norm regularization • k-space undersampling • Rapid magnetic resonance image reconstruction
ISBN-10 981-13-3597-4 / 9811335974
ISBN-13 978-981-13-3597-6 / 9789811335976
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen, Experimentaldesign und Datenanalyse

von Stefan Pollmann; Tömme Noesselt

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
26,99