Studies in Neural Data Science (eBook)
XI, 156 Seiten
Springer International Publishing (Verlag)
978-3-030-00039-4 (ISBN)
Antonio Canale is an Assistant Professor of Statistics at the Department of Statistical Sciences, University of Padova (Italy). His research covers Bayesian non-parametric methods, functional data analysis, statistical learning and data mining. He is the author of a number of papers on methodological and applied statistics, and has served on the scientific committees of national and international conferences. He was the coordinator of the young group of the Italian Statistical Society (y-SIS) in 2015.
Daniele Durante is an Assistant Professor of Statistics at the Department of Decision Sciences, Bocconi University (Italy), and a Research Affiliate at the Bocconi Institute for Data Science. His research is characterized by an interdisciplinary approach at the intersection of Bayesian methods, modern applications, and statistical learning to develop flexible and computationally tractable models for complex data. He is the coordinator of the young group of the Italian Statistical Society (y-SIS).
Lucia Paci is an Assistant Professor of Statistics at the Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan (Italy). Her research focuses mainly on spatial and spatiotemporal modeling under the Bayesian framework, with applications in the environmental and economic sciences. She was the coordinator of the young group of the Italian Statistical Society (y-SIS) in 2016.
Bruno Scarpa is an Associate Professor of Statistics at the Department of Statistical Sciences, University of Padova (Italy). He teaches data mining at the master level and statistical methods for big data at the undergraduate level. His research interests include methodological developments motivated by real data applications. He is the author or coauthor of numerous papers and books in the fields of methodological and applied statistics and data mining.
Antonio Canale is an Assistant Professor of Statistics at the Department of Statistical Sciences, University of Padova (Italy). His research covers Bayesian non-parametric methods, functional data analysis, statistical learning and data mining. He is the author of a number of papers on methodological and applied statistics, and has served on the scientific committees of national and international conferences. He was the coordinator of the young group of the Italian Statistical Society (y-SIS) in 2015. Daniele Durante is an Assistant Professor of Statistics at the Department of Decision Sciences, Bocconi University (Italy), and a Research Affiliate at the Bocconi Institute for Data Science. His research is characterized by an interdisciplinary approach at the intersection of Bayesian methods, modern applications, and statistical learning to develop flexible and computationally tractable models for complex data. He is the coordinator of the young group of the Italian Statistical Society (y-SIS). Lucia Paci is an Assistant Professor of Statistics at the Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan (Italy). Her research focuses mainly on spatial and spatiotemporal modeling under the Bayesian framework, with applications in the environmental and economic sciences. She was the coordinator of the young group of the Italian Statistical Society (y-SIS) in 2016. Bruno Scarpa is an Associate Professor of Statistics at the Department of Statistical Sciences, University of Padova (Italy). He teaches data mining at the master level and statistical methods for big data at the undergraduate level. His research interests include methodological developments motivated by real data applications. He is the author or coauthor of numerous papers and books in the fields of methodological and applied statistics and data mining.
1 S. Ranciati et al, Understanding Dependency Patterns in Structural and Functional Brain Connectivity through fMRI and DTI Data.- 2 E. Aliverti et al, Hierarchical Graphical Model for Learning Functional Network Determinants.- 3 A. Cabassi et al, Three Testing Perspectives on Connectome Data.- 4 A. Cappozzo et al, An Object Oriented Approach to Multimodal Imaging Data in Neuroscience.- 5 G. Bertarelli et al, Curve Clustering for Brain Functional Activity and Synchronization.- 6 F. Gasperoni and A. Luati, Robust Methods for Detecting Spontaneous Activations in fMRI Data.- 7 A. Caponera et al, Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data.- 8 M. Guindani and M. Vannucci, Challenges in the Analysis of Neuroscience Data.
Erscheint lt. Verlag | 28.12.2018 |
---|---|
Reihe/Serie | Springer Proceedings in Mathematics & Statistics | Springer Proceedings in Mathematics & Statistics |
Zusatzinfo | XI, 156 p. 62 illus., 26 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Schlagworte | Complex Data • Data Science • Multimodality Imaging Data • Neuroscience • open access • Statistics |
ISBN-10 | 3-030-00039-7 / 3030000397 |
ISBN-13 | 978-3-030-00039-4 / 9783030000394 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich