Carbon-Containing Polymer Composites -

Carbon-Containing Polymer Composites (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
X, 574 Seiten
Springer Singapore (Verlag)
978-981-13-2688-2 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.



Dr. Mostafizur Rahaman is an Assistant Professor at the Department of Chemistry at the College of Science, King Saud University, Riyadh 11451, Saudi Arabia. He obtained his M. Sc. (Chemistry) from T. M. Bhagalpur University, India and Ph. D. (Chemical/Polymer Chemistry) from the Indian Institute of Technology Kharagpur, India. He completed his M. Tech. in Plastics Engineering at the Central Institute of Plastics Engineering and Technology (CIPET), Bhubaneswar, Orissa, India. He has published 60 papers and 5 communicated manuscripts in international journals and 15 research articles in international conference proceedings. He has also published 1 patent and 1 book. Dr. Rahaman has 9 years of teaching and 10 years of research experience. He has completed six research projects and attended/presented at various international conferences/seminars. He has been an active reviewer for various international journals and member of journal advisory boards. An expert in handling sophisticated instruments. His research interests include polymer nanotechnology/nanocomposites; polymer membrane, polymer thin film; polymer-based sensors; catalytic synthesis of polymers and conducting polymers; polymer-based coating for corrosion protection; polymer fuel cell and solar energy and bio-polymers for biomedical applications.

Dr. Dipak Khastgir is a Professor of Rubber Technology Centre at the Indian Institute of Technology (IIT), Kharagpur, India. He obtained his M. Sc. (Physical Chemistry) and Ph. D. (Polymer Composites) at IIT Kharagpur in 1975 and 1984, respectively. His research areas include conductive polymer (polyaniline, synthesis and characterizaton); rubber-carbon conductive composite for EMI shielding application and pressure sensitive conductive rubber; high voltage polymeric insulators and piezoelectric polymer composites; characterization of rubber and rubber -like-materials; textile reinforcement of rubber products; and industrial rubber product design & technology. He has published over 180 papers in refereed international journals, 70 seminar & conference proceedings, and 6 books.
 
Dr. Ali Kanakhir Aldalbahi is Vice Dean (Research) at King Abdullah Institute for Nanotechnology; Associate Professor at the Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; and Director of the Distinguished Student Program at King Saud University. He obtained his Ph. D. in Chemistry (Nanotechnology) and Master's in Chemistry (Nanotechnology) at Wollongong University in 2013 and 2008 respectively. He is a member of Australian Nanotechnology Network (ANN), Australian Student Leadership Association (ASLA), Saudi Chemical Society (SCS) and Material Research Society (MRS). He has published more than 100 papers in national and international journals.


This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.

Dr. Mostafizur Rahaman is an Assistant Professor at the Department of Chemistry at the College of Science, King Saud University, Riyadh 11451, Saudi Arabia. He obtained his M. Sc. (Chemistry) from T. M. Bhagalpur University, India and Ph. D. (Chemical/Polymer Chemistry) from the Indian Institute of Technology Kharagpur, India. He completed his M. Tech. in Plastics Engineering at the Central Institute of Plastics Engineering and Technology (CIPET), Bhubaneswar, Orissa, India. He has published 60 papers and 5 communicated manuscripts in international journals and 15 research articles in international conference proceedings. He has also published 1 patent and 1 book. Dr. Rahaman has 9 years of teaching and 10 years of research experience. He has completed six research projects and attended/presented at various international conferences/seminars. He has been an active reviewer for various international journals and member of journal advisory boards. An expert in handling sophisticated instruments. His research interests include polymer nanotechnology/nanocomposites; polymer membrane, polymer thin film; polymer-based sensors; catalytic synthesis of polymers and conducting polymers; polymer-based coating for corrosion protection; polymer fuel cell and solar energy and bio-polymers for biomedical applications.Dr. Dipak Khastgir is a Professor of Rubber Technology Centre at the Indian Institute of Technology (IIT), Kharagpur, India. He obtained his M. Sc. (Physical Chemistry) and Ph. D. (Polymer Composites) at IIT Kharagpur in 1975 and 1984, respectively. His research areas include conductive polymer (polyaniline, synthesis and characterizaton); rubber-carbon conductive composite for EMI shielding application and pressure sensitive conductive rubber; high voltage polymeric insulators and piezoelectric polymer composites; characterization of rubber and rubber -like-materials; textile reinforcement of rubber products; and industrial rubber product design & technology. He has published over 180 papers in refereed international journals, 70 seminar & conference proceedings, and 6 books. Dr. Ali Kanakhir Aldalbahi is Vice Dean (Research) at King Abdullah Institute for Nanotechnology; Associate Professor at the Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; and Director of the Distinguished Student Program at King Saud University. He obtained his Ph. D. in Chemistry (Nanotechnology) and Master’s in Chemistry (Nanotechnology) at Wollongong University in 2013 and 2008 respectively. He is a member of Australian Nanotechnology Network (ANN), Australian Student Leadership Association (ASLA), Saudi Chemical Society (SCS) and Material Research Society (MRS). He has published more than 100 papers in national and international journals.

Preface 6
Contents 8
About the Editors 10
1 Synthesis/Preparation of Carbon Materials 12
Abstract 12
1 Synthesis of Diamonds 13
1.1 History of Diamond Synthesis 13
1.2 Different Methods for the Synthesis of Diamonds 14
1.3 Chemical Vapor Deposition (CVD) Technique 17
1.4 Nanodiamonds (NDs) 20
2 Fullerene Synthesis 21
2.1 Different Methods of Fullerene Synthesis 21
2.2 Extraction of Fullerene 24
3 Synthesis of Graphite 25
3.1 Graphite Electrode 25
3.2 Water-Soluble Graphite 25
3.3 Expanded Graphite 26
3.4 Hydrothermal Synthesis of Graphite 28
3.5 Graphite Encapsulated Metal (GEM) Nanoparticles 29
3.6 Miscellaneous Synthesis of Graphite 30
4 Preparation of Carbon Black 31
4.1 Carbon Black Manufacturing Processes 31
4.2 Channel Black Process 31
4.3 Gas Black Process 32
4.4 Thermal Black Process 32
4.5 Acetylene Black Process 33
4.6 Lamp Black Process 33
4.7 Furnace Black Process 33
4.8 Miscellaneous Synthesis Methods of Carbon Black 34
4.8.1 Pyrolysis of Hydrocarbons 34
4.8.2 Pyrolysis of Polymer 35
4.8.3 Plasma Synthesis 35
4.8.4 Hydrolysis of Natural Resources 36
4.9 Synthesis of Activated Carbon 36
5 Synthesis of Carbon Fiber 36
5.1 Introduction 36
5.2 Synthesis Method 37
5.2.1 Spinning 38
5.2.2 Stabilizing 38
5.2.3 Carbonization 38
5.2.4 Treating the Surface 39
5.2.5 Sizing 39
6 Synthesis of Carbon Nanofibers 39
6.1 Introduction 39
6.2 Synthesis Methods 40
6.3 Vapor Grown Nanofiber 41
6.4 Catalytically Grown Nanofibers 41
6.5 Procedure of Synthesizing Carbon Nanofibers 43
6.6 Electrospinning 43
6.7 Template Method 44
6.8 Carbon Film Casting 45
7 Carbon Nanotube Synthesis 45
7.1 Physical Methods 47
7.1.1 Laser Ablation 47
7.1.2 Arc Discharge 47
7.2 Chemical Methods 48
7.2.1 Chemical Vapor Deposition 49
7.2.2 High-Pressure Carbon Monoxide Reaction (HiPco®) 50
7.2.3 CoMoCAT® Process 51
7.3 Miscellaneous Methods 51
7.3.1 Flame Method 51
7.3.2 Electrolysis 52
7.3.3 Ultrasonication 52
8 Synthesis of Graphene 53
8.1 Introduction 53
8.2 Top-Down Approaches 53
8.2.1 Mechanical Breakage 53
8.2.2 Direct Sonication 54
8.2.3 Electrochemical Exfoliation 54
8.2.4 Super Acid Dissolution 55
8.2.5 Chemical Exfoliation of GO 55
8.2.6 Thermal Exfoliation of GO 56
8.3 Bottom-Up Approaches 56
8.3.1 Epitaxial Growth 56
8.3.2 Arc Discharge 56
8.3.3 Chemical Vapor Deposition 59
8.3.4 Unzipping of Carbon Nanotube 59
8.3.5 Reduction of CO 60
9 Summary 60
References 63
2 Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview 76
Abstract 76
1 Introduction 77
2 Different Techniques for the Modification/Functionalization of Carbon Materials 78
2.1 Surface Oxidation 78
2.1.1 Wet Oxidation 79
2.1.2 Dry Oxidation (Gas Phase Oxidation) 83
Oxidation with Air 83
Oxidation with Ozone 84
Plasma 87
2.2 Covalent Coupling via the Oxidized Carbon Materials 91
2.2.1 Amidation 91
2.2.2 Silylation 93
2.2.3 Silanization 94
2.2.4 Grafting of Polymers Chains 97
2.3 Noncovalent Functionalization 98
2.3.1 Polymer Wrapping 98
2.3.2 Surfactant Adsorption 99
2.3.3 Encapsulation 101
2.4 Conclusion 103
References 103
3 Preparation/Processing of Polymer–Carbon Composites by Different Techniques 110
Abstract 110
1 Processing of Conducting Composite Materials 111
1.1 Composites by Solution Processing 111
1.1.1 Evaporative Casting 111
1.1.2 Vacuum Filtration 112
1.1.3 Fiber Spinning 114
1.1.4 Printing 115
1.2 Composites by Melt Processing 117
1.3 Composites by In Situ Polymerization Process 121
1.4 Dry Mixing Technique 123
1.5 Powder Mixing Technique 125
1.6 Aqueous Mixing Technique 127
1.7 Conclusions 129
References 129
4 Mechanical Properties of Carbon-Containing Polymer Composites 136
Abstract 136
1 Introduction 137
2 Carbon Black Composites 137
3 Graphite Composites 138
4 Fullerene Composites 140
5 Nano Diamond Composites 142
6 Carbon Nano Fibre (CNF) Composites 145
7 Carbon Nanotube Polymer Composites 146
8 Graphene Polymer Nanocomposites 158
9 Hybrid Nanocomposites 161
10 Conclusions 162
References 163
5 Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors 169
Abstract 169
1 Introduction 170
1.1 Polymers on the Basis of Electrical Property 170
1.2 Intrinsically Conducting Polymers 170
1.3 Extrinsically Conducting Polymers 170
1.4 Conductivity Mechanism 171
2 Different Types of Electrical Resistivity/Conductivity and Their Measurements 171
2.1 Surface Resistance and Resistivity 172
2.2 Volume/Bulk Resistance and Resistivity 174
2.3 Contact Resistance and Resistivity 175
2.4 Van der Pauw Technique for Resistivity Measurement 177
3 Preparation Methods of Conductive Polymer Composites 178
4 Percolation Theory 178
5 Effect of Different Factors on Electrical Conductivity of Polymer Composites 180
5.1 Types of Fillers 181
5.1.1 Diamond 181
5.1.2 Fullerene 181
5.1.3 Graphite 183
5.1.4 Carbon Black 183
5.1.5 Carbon Fiber and Nanofiber 185
5.1.6 Carbon Nanotubes 186
5.1.7 Graphene 189
5.2 Amount/Concentration of Fillers 190
5.3 Structure of Fillers 192
5.4 Aspect Ratio of Fillers 192
5.5 Functionalization of Carbons 193
5.6 Filler Orientation and Waviness 194
5.7 Polymer Matrix 197
5.8 Polymer Blend 197
5.9 Effect of Temperature 198
5.10 Effect of Pressure 201
5.11 Processing Conditions 202
5.11.1 Dispersion of Conductive Particles 203
5.11.2 Mixing Time 204
5.11.3 Rotor Speed 205
5.11.4 Mixing Temperature 206
5.11.5 Mold Pressure 207
5.12 Forming Process and Vulcanization 208
5.13 Mechanical Deformation 209
5.14 Effect of Frequency 209
6 Conclusions 210
References 211
6 Dielectric Properties of Polymer–Carbon Composites 221
Abstract 221
1 Introduction 221
2 Types of Carbon Fillers and Their Use in Polymer Composites 222
3 Factors Affecting the Dielectric Properties of Polymer–Carbon Composites 223
3.1 Effect of Processing Conditions 223
3.2 Effect of Morphology 226
3.3 Effect of Frequency and Filler Concentration 229
3.4 Effect of Temperature 234
3.5 Effect of Applied Pressure 236
3.6 Effect of Electric Field (Poling) 239
4 Summary and Conclusions 241
References 242
7 Thermal Properties of Polymer–Carbon Nanocomposites 245
Abstract 245
1 Introduction 245
2 Thermal Properties of Polymers and Their Nanocomposites 246
2.1 Thermal Stability of Polymers and Nanocomposites 246
2.2 Transition Temperatures of Polymers and Nanocomposites 248
3 Thermal Properties of Polymer–Carbon Nanotube Composites 250
3.1 Thermal Stability of Polymer/Carbon Nanotube Nanocomposites 251
3.2 Transition Temperatures of Polymer/CNT Nanocomposites 254
4 Thermal Properties of Polymer–Graphene Nanocomposites 257
4.1 Thermal Stability of Graphene-Polymer Composites 259
4.2 Transition Temperatures of Graphene-Polymer Composites 260
5 Thermal Properties of Polymer–Carbon Nanofiber Nanocomposites 262
5.1 Thermal Stability of Polymer–Carbon Fiber Nanocomposites 263
5.2 Transition Temperatures of Polymer–CNF Composites 264
6 Polymer–Fullerene Nanocomposites 266
6.1 Thermal Stability of Polymer–Fullerene Nanocomposites 267
6.2 Transition Temperatures in Polymer–Fullerene Composites 268
7 Conclusions and Future Prospects 270
Acknowledgements 270
References 270
8 Rheological Properties of Polymer–Carbon Composites 281
Abstract 281
1 Introduction 282
1.1 Overview of Polymer Rheology 283
1.1.1 Why the Polymer Rheology Is Significant? 283
1.1.2 Basic Flow Characteristics of Polymers 284
1.1.3 Polymer Melts and Blends 285
Brief Development of Multi-component Polymer Blends 287
Polymer Blends with Effective Miscibility 288
Viscoelasticity of Materials 289
1.1.4 Rheological Modelling on Viscoelasticity 290
1.2 Polymer–Carbon Black Composites 294
1.3 Polymer–Carbon Nanotube (CNT) Composites 297
2 Summary 300
References 301
9 Morphology and Spectroscopy of Polymer–Carbon Composites 305
Abstract 305
1 Introduction 306
2 Morphology and Spectroscopic Characterization 307
2.1 Morphology 307
2.2 Spectroscopy 309
3 Morphology and Spectroscopy of Polymer/Carbon Filler Composites 310
3.1 Polymer/Carbon Black Composites 311
3.2 Polymer/Carbon (Nano) Fiber Composites 315
3.3 Polymer/Carbon Nanotube (CNT) Composites 320
3.4 Polymer/Fullerene Composites 328
3.5 Polymer/(Nano) Diamond Composites 334
3.6 Polymer/Graphite or Graphene Composites 336
4 Conclusion 343
References 343
10 Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites 349
Abstract 349
1 Introduction 350
2 EMI 350
3 EMI Shielding 351
4 EMI SE Theory 353
5 Requirements for Shielding 354
6 Compounding Considerations for Shielding 356
7 Polymer/Carbon Filler Based Composites as EMI Shielding Materials 359
7.1 Polymer/Carbon Fiber (CF) Based Composites 359
7.2 Polymer/Carbon Black (CB) Based Composites 360
7.3 Polymer/Carbon Nanotube (CNT) Based Composites 362
7.4 Polymer/Graphene-Based Composites 364
8 Conclusion 371
Acknowledgements 372
References 372
11 Thermal Conductivity of Polymer–Carbon Composites 379
Abstract 379
1 Introduction 379
1.1 Definition of Thermal Conductivity 380
1.2 Thermal Conductivity Measurement 381
1.3 Thermal Conductivity Behaviour of Low Dielectrics Polymer 382
1.4 Effect of Crystallinity and Temperature on the Thermal Conductivity of Polymers 384
2 Various Carbon Fillers for Thermally Conductive Polymer Composites 385
3 Role of Different Parameter of Filler on Thermal Conductivity Behaviour of Composites 390
3.1 Role of Size and Shape of Filler 390
3.2 Role of Diameter 390
3.3 Role of Length 392
3.4 Role of Surface Modifications 395
3.5 Role of Interface Resistance and Dispersion of Filler in Matrix Polymer 398
4 Overview of Different Model to Explain the Thermal Conductivity Behaviour of Polymer Composites 399
5 Summary 403
References 403
12 Electrical and Electronic Application of Polymer–Carbon Composites 407
Abstract 407
1 Introduction 408
1.1 Different Carbon-Based Materials Used in Polymer Composites 408
1.1.1 Graphite 408
1.1.2 Graphene 408
1.1.3 Fullerenes 409
1.1.4 Carbon Nanotubes (CNTs) 410
1.1.5 Carbon Fibers and Nanofibers 410
1.1.6 Carbon Black 411
1.1.7 Conductive Carbon Black 411
2 Polymer–Carbon Filler Composites 412
3 Electrically Conductive Polymer/Composites 413
3.1 Percolation 413
4 Electrical and Electronic Applications of Carbon Filler Filled Polymer Composites 415
4.1 Microelectronics 415
4.2 Integrated Circuit 416
4.3 Printed Circuit Board 417
4.4 Interconnection 417
4.5 Die Attach 418
4.6 Solder Joints 418
4.7 Heat Sink 419
4.8 Lid/Enclosure 420
4.9 Thermal Interface Material 420
4.10 Electrically Conductive Adhesives 421
4.11 Transparent Conductive Coatings/Flexible Conductors 422
4.12 Display 423
4.13 Organic Light-Emitting Diode (OLED) 424
4.14 Electroluminescent Device 426
4.15 Photovoltaic Device 427
4.16 Sensor 429
4.17 Actuator 432
4.18 Electrode 434
4.19 Battery 436
4.20 Capacitor 438
4.21 Supercapacitor/Ultracapacitor 439
4.22 ESD and EMI Shielding 441
4.23 Memory Devices 444
4.24 Fuel Cells 445
4.25 Field-Effect Transistor 450
5 Conclusions 452
References 453
13 Structural/Load-Bearing Characteristics of Polymer–Carbon Composites 466
Abstract 466
1 Introduction 466
2 Carbon-Based Materials 468
2.1 Classification of Carbon-Based Materials 468
2.2 Structure of Carbon-Based Materials 468
2.2.1 Graphene 468
2.2.2 Graphite and Graphite Nanoplatelets 470
2.2.3 Carbon Nanotubes (CNTs) 471
2.2.4 Fullerene 473
2.2.5 Diamond 474
2.2.6 Nanodiamond 474
2.2.7 Carbon Fiber (CFs) 476
2.2.8 Carbon Nanofiber (CNFs) 476
2.2.9 Carbon Black 477
2.3 Comparison of Physical and Mechanical Properties of CBMs 479
3 Properties Related to Load-Bearing Characteristics of Carbon-Containing Polymer Composites 479
3.1 Strength 481
3.2 Modulus of Elasticity 481
3.3 Stiffness 481
3.4 Hardness 482
3.5 Toughness 482
3.6 Ductility 483
3.7 Fatigue 483
3.8 Creep 483
3.9 Temperature Resistance 483
3.10 Corrosion Resistance 484
4 Load-Bearing Mechanisms of Carbon-Containing Polymer Composites 484
5 Factors Influencing the Load-Bearing Characteristics of Carbon-Containing Polymer Composites 485
5.1 Nature of Polymer and Filler 485
5.2 Dispersion of CBMs 486
5.3 Loading of CBMs 487
5.4 Interfacial Interaction Between Polymer and CBMs 488
5.5 Notches and Cracks 489
5.5.1 UV Radiation 489
5.5.2 Thermal Effect 489
5.5.3 Hydrothermal Aging 490
5.5.4 Chemical Environment 490
5.6 Surrounding Environmental Condition 491
6 Load-Bearing Behavior of Different Carbon-Containing Polymer Composites 491
6.1 Diamond and Nanodiamond/Polymer Composites 491
6.2 Carbon Black/Polymer Composites 492
6.3 Graphite and Graphite Nanoplatelets/Polymer Composites 493
6.4 Graphene/Polymer Composites 493
6.5 Carbon Nanotube/Polymer Composites 494
6.6 Carbon Fiber/Polymer Composites 495
6.7 Carbon Nanofiber/Polymer Composites 496
6.8 Fullerene/Polymer Composites 497
7 Applications 498
7.1 Infrastructure 499
7.2 Aerospace Structures 499
7.3 Automotive Body Parts 500
7.4 Biomedical Applications 501
7.5 Sports Equipment 502
7.6 Energy Storage 503
7.7 Marine Structures 505
7.8 Pipelines and Chemical Plants 505
7.9 Others 506
8 Conclusions 506
Acknowledgements 506
References 506
14 Polymer/Carbon Composites for Sensor Application 512
Abstract 512
1 Introduction 512
2 Mechanisms of Sensor Activity 513
3 Temperature Sensor 514
4 Strain Sensor 518
5 Chemical Sensor 524
6 Concluding Remarks 536
References 536
15 The Use of Polymer–Carbon Composites in Fuel Cell and Solar Energy Applications 541
Abstract 541
1 Introduction 542
2 Carbon/Polymer Composites in Fuel Cell Applications 544
3 Carbon/Polymer Composites in Solar Energy Applications 546
4 Summary 551
References 551
16 Polymer-Carbon Composites as Anti-corrosive Materials 553
Abstract 553
1 Introduction 553
2 Various Forms of Corrosion 554
2.1 General Attack Corrosion 554
2.2 Localized Corrosion 554
2.3 Galvanic Corrosion 556
2.4 Environmental Cracking 557
2.5 Flow Assisted Corrosion 557
2.6 Intergranular Corrosion 557
2.7 Dealloying or Selective Leaching 558
2.8 Fretting Corrosion 558
3 Factors Affecting the Corrosion 559
3.1 Primary Factors 559
3.2 Secondary Factors 560
4 Corrosion Prevention 561
4.1 Various Coatings Used for Corrosion Prevention 562
4.2 Environmental Effect of Anti-corrosive Paint 563
4.3 Various Anti-corrosive Coatings 565
4.4 Working Principle of Anti-corrosive Coatings 569
4.4.1 Barrier Protection 570
4.4.2 Inhibitive Protection 570
4.4.3 Sacrificial Protection 570
5 Additives 571
6 Role of Carbon in Advance Anti-corrosive Paint 572
7 Recent Developments in the Polymer-Carbon Coating for Anti-corrosion Applications 573
7.1 Graphene Oxide as a Corrosion Inhibitor for the Aluminium Current Collector in Lithium Ion Batteries 573
7.2 Graphene Oxide Based Nanopaint 573
7.3 Polyaniline Graphene Composite: Advance Anti-corrosion Coating for Metals 574
7.4 Graphene Barrier Properties to Dissolution of Nickel and Copper Metal 578
8 Conclusion 580
References 580

Erscheint lt. Verlag 5.10.2018
Reihe/Serie Springer Series on Polymer and Composite Materials
Springer Series on Polymer and Composite Materials
Zusatzinfo X, 574 p. 281 illus., 144 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Chemie Organische Chemie
Technik Bauwesen
Technik Maschinenbau
Technik Medizintechnik
Schlagworte Bioengineering Applications • Carbon Composites • Carbon Nanotube • Carbon-Polymer Composites • Geometrical Aspect • Graphite, Graphene • Rheological Properties • thermal conductivity
ISBN-10 981-13-2688-6 / 9811326886
ISBN-13 978-981-13-2688-2 / 9789811326882
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich