Age-Structured Population Dynamics in Demography and Epidemiology - Hisashi Inaba

Age-Structured Population Dynamics in Demography and Epidemiology (eBook)

(Autor)

eBook Download: PDF
2017 | 1st ed. 2017
XIX, 555 Seiten
Springer Singapore (Verlag)
978-981-10-0188-8 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.

Hisashi Inaba, Professor, Graduate School of Mathematical Sciences, The University  of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan
inaba@ms.u-tokyo.ac.jp

This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.

Hisashi Inaba, Professor, Graduate School of Mathematical Sciences, The University  of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japaninaba@ms.u-tokyo.ac.jp

1 The Stable Population Model.- 2 Extensions of the Linear Theory.- 3 Nonlinear One-Sex Models.- 4 Pair Formation Models.- 5 Basic Ideas in Epidemic Modeling.- 6 Age-Structured SIR Epidemic Model.- 7 Epidemic Models for HIV Infection.- 8 Variable Susceptibility, Reinfection and Immunity.- 9 Basic Reproduction Number R0.- 10 Mathematical Tools.

Erscheint lt. Verlag 15.3.2017
Zusatzinfo XIX, 555 p. 15 illus.
Verlagsort Singapore
Sprache englisch
Original-Titel Mathematical Demography
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Mathematik Angewandte Mathematik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Sozialwissenschaften Soziologie Empirische Sozialforschung
Sozialwissenschaften Soziologie Spezielle Soziologien
Technik
Schlagworte Age Structure • Basic Reproduction Number • Ergodic theorems • SIR Model • Stable Population Model
ISBN-10 981-10-0188-X / 981100188X
ISBN-13 978-981-10-0188-8 / 9789811001888
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich