New Developments in Statistical Modeling, Inference and Application (eBook)

Selected Papers from the 2014 ICSA/KISS Joint Applied Statistics Symposium in Portland, OR
eBook Download: PDF
2016 | 1st ed. 2016
XIV, 214 Seiten
Springer International Publishing (Verlag)
978-3-319-42571-9 (ISBN)

Lese- und Medienproben

New Developments in Statistical Modeling, Inference and Application -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon. The contributions cover new developments in statistical modeling and clinical research: including model development, model checking, and innovative clinical trial design and analysis. Each paper was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe. It offered 3 keynote speeches, 7 short courses, 76 parallel scientific sessions, student paper sessions, and social events.

Zhezhen Jin, Ph.D., is Professor of Biostatistics in the Department of Biostatistics, Mailman School of Public Health, Columbia University.  He is a Fellow of the American Statistical Association.  His research interests include survival analysis, resampling methods, longitudinal data analysis, and nonparametric and semiparametric models.  Dr. Jin has collaborated on research in the areas of cardiology, neurology, cancer and epidemiology and is co-founding editor of Contemporary Clinical Trials Communications.

Mengling Liu, Ph.D., is Associate Professor and Interim Director of the Division of Biostatistics in the Department of Population Health and the Department of Environmental Medicine at the New York University School of Medicine.  Dr. Liu's research interests include semiparametric modeling and inference for survival data, joint analysis with longitudinal data, statistical genetics, statistical modeling in epidemiology studies and other types of risk-set sampling studies.  She is engaged in a broad range of collaborative projects in the area of cancer epidemiology, pulmonary disease, cardiovascular disease, and environmental health science.

Xiaolong Luo, Ph.D., is Senior Director of Statistics with Celgene Corporation.  Dr. Luo has many years of experience in the design, conduct, and analysis of clinical trials.  Prior to joining Celgene, he was a Director of Statistics with Johnson & Johnson and a Senior Research Biostatistician with Bristol-Meyers Squibb.  He served as a faculty member at St. Jude Children's Research Hospital before joining industry. 

Zhezhen Jin, Ph.D., is Professor of Biostatistics in the Department of Biostatistics, Mailman School of Public Health, Columbia University.  He is a Fellow of the American Statistical Association.  His research interests include survival analysis, resampling methods, longitudinal data analysis, and nonparametric and semiparametric models.  Dr. Jin has collaborated on research in the areas of cardiology, neurology, cancer and epidemiology and is co-founding editor of Contemporary Clinical Trials Communications.Mengling Liu, Ph.D., is Associate Professor and Interim Director of the Division of Biostatistics in the Department of Population Health and the Department of Environmental Medicine at the New York University School of Medicine.  Dr. Liu’s research interests include semiparametric modeling and inference for survival data, joint analysis with longitudinal data, statistical genetics, statistical modeling in epidemiology studies and other types of risk-set sampling studies.  She is engaged in a broad range of collaborative projects in the area of cancer epidemiology, pulmonary disease, cardiovascular disease, and environmental health science. Xiaolong Luo, Ph.D., is Senior Director of Statistics with Celgene Corporation.  Dr. Luo has many years of experience in the design, conduct, and analysis of clinical trials.  Prior to joining Celgene, he was a Director of Statistics with Johnson & Johnson and a Senior Research Biostatistician with Bristol-Meyers Squibb.  He served as a faculty member at St. Jude Children’s Research Hospital before joining industry. 

Part I: Theoretical Development in Statistical Modeling

1.  Dual Model Misspecification in Generalized Linear Models with Error in Variables

Xianzheng Huang

 

2. Joint Analysis of Longitudinal Data and Informative Observation Times with Time-Dependent Random Effects

Yang Li, Xin He, Haiying Wang and Jianguo Sun

 

3. A Markov Switching Model with Stochastic Regimes with Application to Business Cycle Analysis

Haipeng Xing, Ning Sun and Ying Chen



4. Revisiting Regression Analysis under Link Violation

Yuexiao Dong and Zhou Yu

 

Part II: New Developments in Trial Design

5. Futility Boundary Design Based on Probability of Clinical Success under New Drug Development Paradigm

Yijie Zhou, Ruji Yao, Bo Yang and Ramachandran Suresh

 

6. Bayesian Modeling of Time Response and Dose Response for Predictive Interim Analysis of a Clinical Trial

Ming-Dauh Wang, Dominique A Williams, Elisa V Gomez, and Joyti N Rayamajhi

 

7. An ROC Approach to Evaluate interim Go/No-Go Decision-making Quality with Application to Futility Stopping in the Clinical Trial Designs

Deli Wang, Lu Cui, Lanju Zhang and Bo Yang

 

Part III: Novel Applications and Implementation

8. Recent Advancements in Geovisualization, with a Case Study on Chinese Religions

Jürgen Symanzik, Shuming Bao, XiaoTian Dai, Miao Shui and Bing She

 

9. The Efficiency of Next-Generation Gibbs-Type Samplers: An Illustration Using a Hierarchical Model in Cosmology

Xiyun Jiao, David A. van Dyk, Roberto Trotta and Hikmatali Shariff

 

10. Dynamic Spatial Pattern Recognition in Count Data Xia Wang, Ming-Hui Chen, Rita C. Kuo and Dipak K. Dey

 

11. Bias-corrected Estimators of Scalar Skew Normal

Guoyi Zhang and Rong Liu

Erscheint lt. Verlag 28.10.2016
Reihe/Serie ICSA Book Series in Statistics
ICSA Book Series in Statistics
Zusatzinfo XIV, 214 p. 33 illus., 16 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie
Technik
Schlagworte Applied Statistics • Bayesian • Bayesian Statistics • clinical trial analysis • clinical trial design • Clinical Trials • Data Analysis • Data Mining • diagnostic medicine • futility design • high-dimensional data mining • innovative clinical design • Modeling • model misspecification • Personalized medicine
ISBN-10 3-319-42571-4 / 3319425714
ISBN-13 978-3-319-42571-9 / 9783319425719
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich