New Developments in Statistical Modeling, Inference and Application (eBook)
XIV, 214 Seiten
Springer International Publishing (Verlag)
978-3-319-42571-9 (ISBN)
Zhezhen Jin, Ph.D., is Professor of Biostatistics in the Department of Biostatistics, Mailman School of Public Health, Columbia University. He is a Fellow of the American Statistical Association. His research interests include survival analysis, resampling methods, longitudinal data analysis, and nonparametric and semiparametric models. Dr. Jin has collaborated on research in the areas of cardiology, neurology, cancer and epidemiology and is co-founding editor of Contemporary Clinical Trials Communications.
Mengling Liu, Ph.D., is Associate Professor and Interim Director of the Division of Biostatistics in the Department of Population Health and the Department of Environmental Medicine at the New York University School of Medicine. Dr. Liu's research interests include semiparametric modeling and inference for survival data, joint analysis with longitudinal data, statistical genetics, statistical modeling in epidemiology studies and other types of risk-set sampling studies. She is engaged in a broad range of collaborative projects in the area of cancer epidemiology, pulmonary disease, cardiovascular disease, and environmental health science.
Xiaolong Luo, Ph.D., is Senior Director of Statistics with Celgene Corporation. Dr. Luo has many years of experience in the design, conduct, and analysis of clinical trials. Prior to joining Celgene, he was a Director of Statistics with Johnson & Johnson and a Senior Research Biostatistician with Bristol-Meyers Squibb. He served as a faculty member at St. Jude Children's Research Hospital before joining industry.
Zhezhen Jin, Ph.D., is Professor of Biostatistics in the Department of Biostatistics, Mailman School of Public Health, Columbia University. He is a Fellow of the American Statistical Association. His research interests include survival analysis, resampling methods, longitudinal data analysis, and nonparametric and semiparametric models. Dr. Jin has collaborated on research in the areas of cardiology, neurology, cancer and epidemiology and is co-founding editor of Contemporary Clinical Trials Communications.Mengling Liu, Ph.D., is Associate Professor and Interim Director of the Division of Biostatistics in the Department of Population Health and the Department of Environmental Medicine at the New York University School of Medicine. Dr. Liu’s research interests include semiparametric modeling and inference for survival data, joint analysis with longitudinal data, statistical genetics, statistical modeling in epidemiology studies and other types of risk-set sampling studies. She is engaged in a broad range of collaborative projects in the area of cancer epidemiology, pulmonary disease, cardiovascular disease, and environmental health science. Xiaolong Luo, Ph.D., is Senior Director of Statistics with Celgene Corporation. Dr. Luo has many years of experience in the design, conduct, and analysis of clinical trials. Prior to joining Celgene, he was a Director of Statistics with Johnson & Johnson and a Senior Research Biostatistician with Bristol-Meyers Squibb. He served as a faculty member at St. Jude Children’s Research Hospital before joining industry.
Part I: Theoretical Development in Statistical Modeling
1. Dual Model Misspecification in Generalized Linear Models with Error in Variables
Xianzheng Huang
2. Joint Analysis of Longitudinal Data and Informative Observation Times with Time-Dependent Random Effects
Yang Li, Xin He, Haiying Wang and Jianguo Sun
3. A Markov Switching Model with Stochastic Regimes with Application to Business Cycle Analysis
Haipeng Xing, Ning Sun and Ying Chen
4. Revisiting Regression Analysis under Link Violation
Yuexiao Dong and Zhou Yu
Part II: New Developments in Trial Design
5. Futility Boundary Design Based on Probability of Clinical Success under New Drug Development Paradigm
Yijie Zhou, Ruji Yao, Bo Yang and Ramachandran Suresh
6. Bayesian Modeling of Time Response and Dose Response for Predictive Interim Analysis of a Clinical Trial
Ming-Dauh Wang, Dominique A Williams, Elisa V Gomez, and Joyti N Rayamajhi
7. An ROC Approach to Evaluate interim Go/No-Go Decision-making Quality with Application to Futility Stopping in the Clinical Trial Designs
Deli Wang, Lu Cui, Lanju Zhang and Bo Yang
Part III: Novel Applications and Implementation
8. Recent Advancements in Geovisualization, with a Case Study on Chinese Religions
Jürgen Symanzik, Shuming Bao, XiaoTian Dai, Miao Shui and Bing She
9. The Efficiency of Next-Generation Gibbs-Type Samplers: An Illustration Using a Hierarchical Model in Cosmology
Xiyun Jiao, David A. van Dyk, Roberto Trotta and Hikmatali Shariff
10. Dynamic Spatial Pattern Recognition in Count Data Xia Wang, Ming-Hui Chen, Rita C. Kuo and Dipak K. Dey
11. Bias-corrected Estimators of Scalar Skew Normal
Guoyi Zhang and Rong Liu
Erscheint lt. Verlag | 28.10.2016 |
---|---|
Reihe/Serie | ICSA Book Series in Statistics | ICSA Book Series in Statistics |
Zusatzinfo | XIV, 214 p. 33 illus., 16 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie | |
Technik | |
Schlagworte | Applied Statistics • Bayesian • Bayesian Statistics • clinical trial analysis • clinical trial design • Clinical Trials • Data Analysis • Data Mining • diagnostic medicine • futility design • high-dimensional data mining • innovative clinical design • Modeling • model misspecification • Personalized medicine |
ISBN-10 | 3-319-42571-4 / 3319425714 |
ISBN-13 | 978-3-319-42571-9 / 9783319425719 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich