Reviews in Plasmonics 2015 (eBook)

Chris D. Geddes (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2016
VIII, 453 Seiten
Springer International Publishing (Verlag)
978-3-319-24606-2 (ISBN)

Lese- und Medienproben

Reviews in Plasmonics 2015 -
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Reviews in Plasmonics 2015, the second volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. 

Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.

Preface 6
Contents 8
Chapter 1: Surface Plasmon Polariton Assisted Optical Switching in Noble Metal Nanoparticle Systems: A Sub-Band Gap Approach 10
1.1 Introduction 10
1.1.1 A Percolative Pathway for Electrical Transport 13
1.1.2 A Tunnelling Route to Electrical Transport 16
1.1.3 A Propagative Surface Plasmon for Electrical Transport 19
References 23
Chapter 2: Modeling and Interpretation of Hybridization in Coupled Plasmonic Systems 27
2.1 Introduction 28
2.2 Coupled Mode Model Applied to Interacting Plasmon Modes 29
2.3 Definition of the Complex Valued Extinction of Nanoparticle Assemblies 32
2.4 Numerical Extraction of Resonance Parameters 33
2.5 Eigenmodes of Single Spheres 36
2.6 Hybrid Modes in Dimers 40
2.6.1 Hybrid Modes and Their Energetic Behavior 40
2.6.2 Near-Field Enhancement 45
2.7 Weak and Strong Coupling in Quadrumers 46
2.7.1 Weak Coupling in Small Size Systems 46
2.7.2 Hybridization and Fano-Like Resonances in Strongly Coupled SystemsFano-like resonances 50
2.8 Conclusion 55
References 56
Chapter 3: Radiolytically Synthesized Noble Metal Nanoparticles: Sensor Applications 58
3.1 Introduction 59
3.2 Synthesis of Ag/Au Nanoparticles 60
3.3 Characterization of Metal Nanoparticles 61
3.4 Applications of Radiation Synthesized NobleMetal Nanoparticles: LSPR Based Sensor Applications 62
3.4.1 PVP Stabilized-Au NPs for H2O2 Estimation 63
3.4.2 PVP Stabilized-Au NPs for Hg2+ Estimation 64
3.4.3 PVP Stabilized-Ag NPs for Uric Acid Estimation 65
3.4.3.1 Estimation of Uric Acid in Bovine and Human Serum Samples 68
3.4.4 PMA Stabilized-Ag NPs for Dopamine Estimation 69
3.4.4.1 Estimation of Dopamine in Presence of Ascorbic AcidAscorbic acid (AA) 70
3.5 Conclusion 71
References 71
Chapter 4: Construction, Modeling, and Analysis of Transformation-Based Metamaterial Invisibility Cloaks 75
4.1 Introduction 76
4.2 Theory of Controlling EM Fields by Coordinate Transformation 80
4.2.1 Derivation of Medium Parameter Tensors under Coordinate Transformation 80
4.2.2 Redirection of Optical Paths by Coordinate and Medium Transformation 84
4.3 Theory of Spherical Transformation-Based Metamaterial Cloaks 86
4.3.1 Construction of LinearLinear spherical metamaterial cloaks Spherical Metamaterial Cloaks 86
4.3.2 Construction of NonlinearNonlinear spherical metamaterial cloaks Spherical Metamaterial Cloaks 88
4.4 Conformal Cubical Transformation-Based Metamaterial Cloaks 89
4.5 Higher Order EM Modeling and Analysis of Metamaterial Cloaks 91
4.6 Results and Discussion 94
4.6.1 Examples of Spherical Transformation-Based Metamaterial Cloaks 94
4.6.2 Examples of Cubical Transformation-Based Metamaterial Cloaks 98
4.7 Conclusions 104
References 106
Chapter 5: Interaction of Surface Plasmon Polaritons with Nanomaterials 108
5.1 Introduction 109
5.2 Dispersion Properties of Surface Plasmon Polaritons 109
5.2.1 Dispersion Relation Over a Single Metal Surface 109
5.2.2 Dispersion Relation of SPPs in Double Metal Surface Configuration 111
5.2.3 Surface Plasmons in Multilayer Thin Films Configuration 113
5.3 Absorption of Surface Plasmons Polaritons by Metallic Nanoparticles 116
5.4 Laser Mode Conversion into SPPs in a Metal Coated Optical Fiber 119
5.4.1 Dispersion Relations of Body Waves and Surface Plasmon Polaritons 120
5.4.2 Mode Conversion 123
5.5 Electron Acceleration by Surface Plasmon Polaritons 125
5.5.1 Double Metal Configuration 126
5.5.2 Single Metal Configuration 127
5.6 Surface Plasmon Excitations in Surface Enhanced RamanSpectroscopy 129
5.7 Surface Plasmon Plasmon Applications in Sensing and Solar Cell Technology 132
References 133
Chapter 6: Ultrafast Response of Plasmonic Nanostructures 135
6.1 Introduction 136
6.2 Surface Plasmons in Metal Nanoparticles 138
6.3 Ultrafast Optical Response of Photoexcited Metal Nanoparticles 143
6.3.1 Tuning Between Ultrafast PB and PA in Gold Nanorods by Selective Probing Near LSP Resonance 149
6.3.2 Light Controlled Reversible Switching Between Ultrafast PB and PA in Gold Nanorods 152
6.4 Ultrafast Optical Nonlinearities of Metal Nanoparticles 155
6.4.1 Surface Plasmon Resonance Tuned Optical Nonlinearities 155
6.4.2 Metal Nanoclusters with Improved Ultrafast Nonlinearity 157
6.5 Direct Observation of Surface Vibrations in Nanoparticles 163
6.6 Summary and Outlook 167
References 168
Chapter 7: Graphene-Based Ultra-Broadband Slow-Light System and Plamonic Whispering-Gallery-Mode Nanoresonators 172
7.1 Introduction 172
7.2 Validity of the Zero-Thickness Graphene Monolayer Model 174
7.3 Surface Conductivity of Graphene 177
7.4 Analysis of the Propagation Constant of the Plasmons Along the Graphene Monolayer 179
7.5 Nanofocusing of the Mid Infrared Electromagnetic Field on the Gradient Chemical Potential Distributed Graphene Monolayer 181
7.6 Ultra-Broadband Rainbow Capture and Releasing Along Gradient Chemical Potential Distributed Graphene Monolayer 183
7.7 Tunable Plasmonic Whispering-Gallery-Mode Properties of the Graphene Monolayer Coated Dielectric Nanowire and Nanodisks 187
References 191
Chapter 8: Fano Resonance in Plasmonic Optical Antennas 194
8.1 Introduction 195
8.2 Fano Resonance in Optical Nanoantennas 196
8.3 Analytical Model for Optical Nanoantenna Clusters 197
8.3.1 Electrodynamics Coupling Model for Nanoclusters 197
8.3.2 Superradiant and Subradiant Coupling Matrix Elements 201
8.3.3 Analysis of Optical Directivity Properties 203
8.4 Transmission and Reflection Analysis 204
8.4.1 Superradiant Mode Analysis 204
8.4.2 Fano Resonance Analysis 207
8.5 Element Optimization 209
8.5.1 Directivity Analysis 209
8.5.2 Bandwidth Analysis 211
8.6 Directivity Analysis 213
8.7 Mass Spring Model 216
8.8 Circuit Model 218
8.8.1 Plasmonic Nanosphere Circuit Model 218
8.8.2 Fano Resonance Circuit Model 219
8.9 Conclusion 223
References 224
Chapter 9: Elongated Nanostructured Solar Cells with a Plasmonic Core 228
9.1 Introduction 228
9.2 Experimental Procedures and Setups 231
9.2.1 Sample Fabrication 231
9.2.2 Solar Simulator 232
9.2.3 Spectral Response 234
9.2.4 Angle and Polarization Resolved Measurements 235
9.2.5 Specular Reflection and Scattering 235
9.3 ExperimentaHydrogenated amorphous silicon (a-Si:H)l Study of a Silver Nanoneedle Plasmonic Core Inside an Elongated a-Si:H... 236
9.4 FDTD Simulations on the Ag Nanoneedle Inside a a-Si:H Core-Shell Structure 241
9.4.1 The Finite-Difference Time Domain MethodFinite-difference time domain (FDTD) method 241
9.4.2 Simulation Details 243
9.4.3 FDTD Simulation Results and Comparison with Experiment 244
9.5 Future Possibilities 248
References 249
Chapter 10: Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes 252
10.1 Introduction 252
10.2 Highly Ordered Plasmonic NanostructuresPorous anodic alumina (PAA) membranes Templated by PAA Membranes 254
10.2.1 Plasmonic Nanostructures Templated by the Pore Surface of PAA Membranes 255
10.2.2 Plasmonic Nanostructures Templated by the Bottom Surface of PAA Membranes 257
10.2.3 Plasmonic Nanostructures Patterned by Single Step Direct Imprint Process 259
10.3 Applications 262
10.3.1 Surface-Enhanced Raman Scattering (SERS) SensingSurface-enhanced Raman scattering (SERS) sensing 262
10.3.2 Fluorescence Process Tailoring 266
10.4 Summary 273
References 274
Chapter 11: Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles 278
11.1 Introduction 278
11.1.1 Red ShiftRed shiftRed shift of SPR Frequency: Spillout EffectRed shift 279
11.1.2 Blue ShiftBlue shift of SPRBlue shift Frequency: Screening EffectScreening effect 284
11.1.3 Blue Shift of SPR Frequency: Quantum EffectQuantum effect 288
References 296
Chapter 12: Quantum Plasmonics: From Quantum Statistics to Quantum Interferences 298
12.1 Introduction 298
12.2 From Quantum Optics to Quantum Plasmonics 300
12.3 Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides 302
12.4 Quantum Interference in the Plasmonic Hong-Ou-Mandel Effect 307
12.5 Conclusions 313
References 314
Chapter 13: Lasers and Plasmonics: SPR Measurements of Metal Thin Films, Clusters and Bio-Layers 317
13.1 Introduction 318
13.2 Experimental Details 321
13.2.1 Thin Films Deposition Technique 323
13.2.1.1 Introduction to Physical Vapour Deposition (PVD) 324
13.2.1.2 Thermal Evaporation 324
13.2.2 Thin Films Preparation 325
13.2.3 Thin Films Characterization (Morphology) 326
13.2.3.1 Atomic Force Microscopy (AFM) 326
Introduction 326
Principle of Operation 326
13.3 Results and Discussion (Section I) 330
13.3.1 Single Layer Films 330
13.3.2 Double Layer Films 332
13.4 Summary (Section I) 335
13.5 Results and Discussion (Section II) 336
13.6 Summary (Section II) 339
References 339
Chapter 14: Plasmon Assisted Luminescence in Rare Earth Doped Glasses 341
14.1 Glasses and Glass Ceramics 343
14.2 Trivalent Rare Earth Ions Doped Glasses 347
14.2.1 Radiative Properties and Judd-Ofelt Theory 349
14.2.2 Energy Transfers and Cooperative Process 352
14.2.3 Non-linear and Upconversion Processes 353
14.3 Optical Properties of Metallic Nanoparticles 354
14.3.1 Interaction of Light with Nanoparticles 355
14.3.2 Preparation and Observation of Metallic Nanoparticles 357
14.3.3 Surface Enhanced Raman and Fluorescence Spectroscopy (SERS, SEFS) 360
14.4 Rare Earth Doped Glasses Embedded with Metallic NPs 361
14.4.1 Eu3+-Doped 363
14.4.2 Er3+-Doped 366
14.4.3 Nd3+-Doped 370
14.4.4 Sm3+-Doped 370
14.4.5 Dy3+-Doped 373
14.4.6 Tm3+-Doped 373
14.4.7 Tb3+-Doped 375
14.4.8 Pr3+-Doped 377
14.4.9 Ho3+-Doped 378
14.5 Summary 378
References 380
Chapter 15: Surface Enhanced Fluorescence by Plasmonic Nanostructures 389
15.1 Introduction 390
15.2 SEF Principles 391
15.2.1 Principles of Fluorescence 391
15.2.2 Interaction of Fluorophores with Surface Plasmons 393
15.3 SEF from Various Geometrical Metallic Plasmonic Nanostructure 395
15.3.1 Fluorescence Enhancement from Periodical Metallic Plasmonic Nanostructure 395
15.3.1.1 Surface Enhanced Fluorescence from Nanograting Substrate 396
15.3.1.2 Surface Enhanced Fluorescence from Nanohole Arrays Substrate 397
15.3.1.3 Plasmon Enhanced Fluorescence from Nanoparticle Arrays Substrate 400
15.3.1.4 Plasmon Enhanced Fluorescence from Nanorod Arrays Substrate 402
15.3.2 Non-Periodical Metallic Plasmonic Nanostructure 402
15.3.2.1 Plasmon Enhanced Fluorescence from Metallic Silver Island Substrate 403
15.3.2.2 Surface Enhanced Fluorescence from Metallic Fractal-Like Substrate 403
15.3.2.3 Surface Enhanced Fluorescence from Deposited Metallic Nanoparticle Substrate 407
15.3.3 The Spacer and Wavelength Effect Towards the Fluorescence Enhancement 410
15.4 Conclusion 412
References 413
Chapter 16: Remote Spectroscopy Below the Diffraction Limit 418
16.1 Introduction 418
16.2 General Methods for Remote Spectroscopy on Silver Nanowires 421
16.3 Remote Excitation Surface Enhanced Raman Scattering (RE-SERS) 422
16.4 Applications of RE-SERS: Live Cell RE-SERS Endoscopy 427
16.5 Remote Excitation of Single Molecule Fluorescence 432
16.6 Conclusions 439
References 439
Index 442

Erscheint lt. Verlag 22.1.2016
Reihe/Serie Reviews in Plasmonics
Zusatzinfo VIII, 453 p. 237 illus., 62 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Medizin / Pharmazie Studium
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte fluorescence • Metal films • nanoparticles • nanostructures • plasmonics • Surface Plasmon Resonance
ISBN-10 3-319-24606-2 / 3319246062
ISBN-13 978-3-319-24606-2 / 9783319246062
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich