Bone Morphogenic Protein

Bone Morphogenic Protein (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
346 Seiten
Elsevier Science (Verlag)
978-0-12-802592-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
150,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press.

The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones.  A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed.

This volume focuses on Bone Morphogenic Protein.


  • Expertise of the contributors
  • Coverage of a vast array of subjects
  • In depth current information at the molecular to the clinical levels

First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones. A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed. This volume focuses on Bone Morphogenic Protein. Expertise of the contributors Coverage of a vast array of subjects In depth current information at the molecular to the clinical levels

Chapter One

Mechanisms of BMP–Receptor Interaction and Activation


Thomas D. Mueller1    Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany
1 Corresponding author: email address: mueller@biozentrum.uni-wuerzburg.de

Abstract


Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand–receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.

Keywords

Bone morphogenetic proteins

Ligand–receptor interactions

Protein–protein recognition

BMP receptor activation mechanisms

1 Evolutionary Expansion and Diversification of the Transforming Growth Factor β Superfamily


Multicellular organisms require continuous intercellular communication not only during their development but also for homeostasis and survival. Processes such as cell differentiation, proliferation, migration or apoptosis depend on endocrine, paracrine or possibly autocrine stimuli, which at their heart are often, but not exclusively exerted by protein–protein interactions at the cell surface involving a secreted (sometimes also membrane-associated) growth factor, and a transmembrane receptor. During evolution, nature has “recycled” successful examples of above combinations thereby forming larger protein families, in which further homologous growth factors plus their respective receptors were formed possibly by gene duplication and acquired additional functionalities necessary to cope with the increasing complexity of the evolving organisms. The transforming growth factor β (TGFβ) superfamily comprising TGFβs, Activins, and bone morphogenetic proteins (BMPs) as well as growth and differentiation factors (GDFs) presents a prime example of such a protein family with a few growth factors in simple organisms like worms (five TGFβ ligands, for review: Savage-Dunn, 2005) and a large number of ligands in mammals (> 30 TGFβ factors in human, for review: Feng & Derynck, 2005; Hinck, 2012; Mueller & Nickel, 2012; Fig. 1A). An evolutionary expansion in the TGFβ superfamily can be also noted from the observation that homologs of BMPs—in contrast to senso strictu TGFβs and Activins—are already found in worms, whereas homologs of Activins appear for the first time in flies and senso strictu TGFβs emerge in fish and amphibian (Newfeld, Wisotzkey, & Kumar, 1999). This suggests that BMPs are likely the founding members of this growth factor family, which then diverged into Activins and TGFβ. Thus, TGFβs seem to be the evolutionary youngest members despite serving as eponym of the whole superfamily. The later emergence of Activins and TGFβs is also consistent with their encoded functionalities. Activins modulate the reproductive axis (Bilezikjian, Blount, Donaldson, & Vale, 2006) and exert regulatory roles in inflammation and immunity (for reviews: Aleman-Muench & Soldevila, 2012; Hedger, Winnall, Phillips, & de Kretser, 2011), and TGFβs being implicated in the control of immunity (for review: Yoshimura & Muto, 2011) and wound healing (for review: Leask & Abraham, 2004), functions that are not or differently implemented in simpler organisms such as worms or insects. But not only TGFβs and Activin additionally appeared later in evolution, but also the number of BMP homologs expanded dramatically.

Figure 1 (A) Phylogenetic analysis of the TGFβ ligand superfamily. The TGFβs can be classified into four subgroups indicated on the left: (I) sensu stricto TGFβs, (II) Activin/Inhibins, (III) BMPs/GDFs, and (IV) others. Type I and type II receptor recruitment is indicated, the activation of either the SMAD1/5/8 or SMAD2/3 pathway is marked by light or dark gray-shaded boxes, respectively. (B) Phylogenetic analysis of the TGFβ receptors showing the classification into type I and type II receptors. Light and dark gray boxes indicate the activation of either SMAD1/5/8 or SMAD2/3. (C) TGFβ proteins are expressed as pre-proproteins containing a signal peptide (SP), a prodomain, which in TGFβs is covalently dimerized by disulfide bonds (marked by asterisks), a proteolytic processing site (RXXR) and a mature region containing the characteristic cystine-knot motif comprising six conserved cysteine residues (marked by bars). Some TGFβs lack a seventh cysteine residue (marked by two asterisks) involved in covalent dimer formation. (D) Architecture of the TGFβ receptors comprising a signal peptide (SP), an extracellular ligand-binding domain (ECD), a single-span transmembrane element, and an intracellular kinase domain. Type I receptors differ by an additional membrane-proximal glycine/serine-rich motif (GS-box). Furthermore, BMPRII has a unique C-terminal domain (marked by an asterisks), which recruits additional signaling proteins.

In Caenorhabditis elegans, four of the five TGFβ members, dbl1, daf7, tig2, and tig3, could be mapped to the mammalian BMP orthologs, BMP5, GDF8/11, BMP8, and BMP2 (for review: Gumienny & Savage-Dunn, 2013); however, the functional similarities seem limited. For instance, dbl1 and daf7, which are involved in the regulation of body size in the so-called Dauer larval development pathway, possibly exert a similar growth-limiting function as found for GDF8/11 in vertebrates. Despite their limited homology with BMP8 and BMP2, no functions have yet been described for the C. elegans orthologs tig-2 and tig-3, but both members might be involved in patterning. Unc129, whose mature region exhibits limited sequence homology to mammalian BMP8 and GDF6, seems to be involved in axon guidance and signals via a non-TGFβ related noncanonical signaling pathway (Gumienny & Savage-Dunn, 2013). In flies, seven TGFβ members have been identified of which the ligands dpp, gbb, and screw can be mapped to the mammalian BMP2/4 and BMP5/6/7 (Newfeld et al., 1999), myoglianin likely presents an ortholog of GDF8/11 (Lo & Frasch, 1999), and dActivinβ, Dawdle and Maverick are fly Activin-like ligands (Kutty et al., 1998; Nguyen, Parker, & Arora, 2000; Parker, Ellis, Nguyen, & Arora, 2006; Serpe & O'Connor, 2006). Possibly due to the evolutionary smaller distance, the fly BMP orthologs dpp, gbb, and screw exert in vivo function more closely related to their vertebrate/mammalian counterparts. Dpp, the fly ortholog of BMP2 and BMP4, is essential for correct dorsoventral patterning in fly (Irish & Gelbart, 1987), a function it shares with BMP2/swirl in fish (Kishimoto, Lee, Zon, Hammerschmidt, & Schulte-Merker, 1997) and BMP4 in mouse (Winnier, Blessing, Labosky, & Hogan, 1995). Drosophila gbb is involved in the development of the fly's intestinal tract or the eyes similarly as found for BMP6/7 in vertebrates (Helder et al., 1995; Luo et al., 1995; Perr, Ye, & Gitelman, 1999; Wharton et al., 1999). On the contrary, the functions encoded by dActivinβ and the further distant Activin-like members Dawdle and Maverick seem to be more limited to neuronal morphogenesis compared to their vertebrate homologs (Kutty et al., 1998; Nguyen et al., 2000; Ting et al., 2007; Zhu et al., 2008).

With the emergence of vertebrates, the number of TGFβ members not only doubled as evident from the 14 and 19 TGFβ ligands in fish (two Activin orthologs; Thisse, Wright, & Thisse, 2000) of Danio rerio are not listed in Massague (2000) and amphibian (Xenopus laevis), but their encoded functions are now more closely resembling those from mammalian orthologs. For instance, BMP4 exerts a mesoderm-inducing activity in early gastrulation in fish and amphibian identical with its patterning function in mammals (Fainsod, Steinbeisser, & De Robertis, 1994; Koster et al., 1991; Neave, Holder, & Patient, 1997; Nikaido, Tada, Saji, & Ueno, 1997; Schmidt, Suzuki, Ueno, & Kimelman, 1995; Winnier et al.,...

Erscheint lt. Verlag 14.8.2015
Mitarbeit Herausgeber (Serie): Gerald Litwack
Sprache englisch
Themenwelt Medizinische Fachgebiete Chirurgie Unfallchirurgie / Orthopädie
Medizinische Fachgebiete Innere Medizin Endokrinologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 0-12-802592-1 / 0128025921
ISBN-13 978-0-12-802592-5 / 9780128025925
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 14,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich