Advances in Immunology -

Advances in Immunology (eBook)

Frederick W. Alt (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
244 Seiten
Elsevier Science (Verlag)
978-0-12-802432-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
138,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for the future.

Key features:

* Contributions from leading authorities * Informs and updates on all the latest developments in the field


Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for the future. Contributions from leading authorities Informs and updates on all the latest developments in the field

Front Cover 1
Advances in Immunology 4
Copyright 5
Contents 6
Contributors 8
Chapter 1: NOD.H-2h4 Mice: An Important and Underutilized Animal Model of Autoimmune Thyroiditis and Sjogren´s Syndrome 10
1. Introduction 11
2. Spontaneous Autoimmune Thyroiditis 13
2.1. SAT in WT NOD.H-2h4 mice/importance of iodine 13
2.2. B cells and autoantibodies in SAT 17
2.3. T cells as effector cells in SAT 19
2.4. Regulatory T cells in SAT 20
2.5. IFN-. is required for development of SAT 23
2.6. CD40 and CD40/CD154 interactions in SAT 24
3. TEC Hyperplasia/Proliferation 25
3.1. TEC H/P develops only if IFN-. is absent 25
3.2. TEC H/P histology, incidence, and kinetics of development 26
3.3. Mice with severe TEC H/P have reduced thyroid function and thyroid fibrosis 28
3.4. TEC H/P is a T cell-dependent autoimmune disease 29
3.4.1. CD4+ versus CD8+ T cells 30
3.4.2. B cells in TEC H/P 31
3.5. TGF-ß and TNF-a are effector cytokines for TEC H/P 32
3.6. Use of the adoptive transfer model to examine kinetics of TEC H/P development and assess therapeutic protocols 34
3.7. Agonistic anti-CD40 induces proliferation of thyrocytes in IFN-.-/- NOD.H-2h4 mice promotes development of severe TE... 35
3.8. Some IFN-.-/- NOD.H-2h4 mutants develop early and severe TEC H/P 38
3.8.1. CD28-/- mice 38
3.8.2. PD-1-/-IFN-.-/- NOD.H-2h4 mice 41
4. NOD.H-2h4 Mice Can Be Used as a Model of Experimentally Induced Autoimmune Thyroiditis 42
5. SS in NOD.H-2h4 Mice and NOD.H-2h4 Mutants 43
6. Concluding Remarks 45
Acknowledgments 46
References 47
Chapter 2: Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo 54
1. Mast Cell Biology 55
1.1. Origin and tissue distribution of mast cells 55
1.2. The spectrum of mast cell-derived mediators 56
1.3. Phenotypic heterogeneity and functional plasticity 57
1.4. Mast cell-associated proteases and their cellular distribution 59
2. Nongenetic Approaches for Analyzing the Functions of Mast Cells and Mast Cell-Associated Proteases In Vivo 63
2.1. Pharmacological approaches 63
2.1.1. Mast cell stabilizers 63
2.1.2. Mast cell activators 64
2.1.3. Purified or recombinant mast cell proteases 64
2.1.4. Tryptase and chymase inhibitors 65
2.1.5. Tyrosine kinase inhibitors 66
2.2. Antibody-based approaches 67
3. Genetic Approaches for Analyzing the Functions of Mast Cells In Vivo 67
3.1. Mice with mutations affecting c-kit structure or expression and ``MC knockin mice´´ 68
3.2. MC-deficient mice with normal c-kit 71
3.2.1. Mcpt5-Cre R-DTA mice
3.2.2. Cpa3Cre/+-``Cre-Master´´ mice 77
3.2.3. Cpa3-Cre Mcl-1fl/fl-``Hello Kitty´´ mice
3.3. Inducible models of mast cell deficiency 79
3.3.1. Mcpt5-Cre iDTR mice
3.3.2. ``Mas-TRECK´´ mice 80
3.3.3. Cpa3-Cre iDTR mice
3.3.4. KitCreERT2 and KitCreERT2/+R26-GFPStopFDTA mice 81
3.4. Specific deletion of mast cell-associated products by Cre-lox approaches 82
4. Genetic Approaches for Analyzing the Functions of Mast Cell-Associated Proteases In Vivo 84
5. Using Mast Cell-Deficient or Mast Cell-Associated Protease-Deficient Mice to Analyze Functions of Mast Cells or Their ... 88
5.1. Settings in which similar results have been obtained using multiple models of mast cell deficiency and/or deficienci... 88
5.1.1. IgE-dependent local and systemic anaphylaxis reactions 88
5.1.2. Intestinal nematode infections 89
5.1.3. Resistance to animal venoms 90
5.1.4. Effects on inflammation during innate and adaptive immune responses 92
5.1.5. Mouse models of bacterial infection 93
5.1.6. Tissue remodeling and pathology in disease settings 98
5.2. Settings in which divergent results have been obtained using multiple models of MC deficiency or deficiencies in MC-... 98
5.2.1. Wound healing and tissue remodeling 98
5.2.2. Mouse models of autoimmune arthritis 100
5.2.3. Experimental autoimmune encephalomyelitis 102
5.2.4. Mouse models of asthma 103
5.2.5. Cutaneous contact hypersensitivity 105
5.2.6. Experimental glomerulonephritis 108
5.3. Potential effects of strain background, the host microbiome, and/or differences in animal husbandry 109
5.4. Importance of experimental design in studying the roles of mast cells and mast cell-associated proteases in vivo 110
6. General Recommendations Regarding the Use of Mast Cell-Deficient or Mast Cell-Associated Protease-Deficient Mice to An... 112
7. Perspective 113
Acknowledgments 117
References 117
Chapter 3: Epithelial Cell Contributions to Intestinal Immunity 138
1. Introduction 139
1.1. Overview of epithelial-microbial interactions in the mammalian intestine 139
1.2. The intestinal microbiota 140
1.3. Germ-free mice as experimental tools 141
2. Cellular Makeup of the Intestinal Epithelial Barrier 142
2.1. Enterocytes 142
2.2. Goblet cells 143
2.3. Paneth cells 143
2.4. Enteroendocrine cells 143
2.5. M cells 144
3. Epithelial Cell Sensing of Intestinal Microbes 144
3.1. Epithelial detection of microbes by pattern recognition receptors 144
3.2. Tissue-specific modulation of epithelial cell-specific innate immune responses 147
4. Mucus Production by the Intestinal Epithelium 148
4.1. Secretion and assembly of the mucus layer 148
4.2. Regulation of mucus production 148
5. Epithelial Antimicrobial Proteins 150
5.1. Epithelial antimicrobial protein families 151
5.1.1. Defensins 151
5.1.2. Lectins 152
5.1.3. Cathelicidins 153
5.1.4. Lysozyme and phospholipase A2 154
5.1.5. Lipocalin 154
5.1.6. RNases 154
5.2. Regulation of epithelial antimicrobial proteins 154
5.2.1. Transcriptional regulation of epithelial antimicrobial protein expression 155
5.2.2. Developmental regulation of antimicrobial protein expression 158
5.2.3. Posttranslational regulation of antimicrobial protein function 158
5.2.4. Regulation of antimicrobial protein secretion 159
5.3. In vivo functions of epithelial antimicrobial proteins 159
5.3.1. Protection against pathogens 160
5.3.2. Shaping microbiota composition 161
5.3.3. Limiting bacterial-epithelial cell contact 161
6. Intestinal Epithelial Cell Autophagy 162
6.1. Autophagy as a barrier to bacterial dissemination 162
6.2. Autophagy-dependent regulation of protein secretion 163
7. Epithelial Regulation of Adaptive Immunity 163
7.1. Transcytosis of immunoglobulin A 164
7.2. Cytokine secretion 165
7.3. Antigen delivery to subepithelial immune cells 165
8. Bacterial Stimulation of Epithelial Cell Repair 166
8.1. MyD88-dependent epithelial repair 167
8.2. Activation of epithelial repair by reactive oxygen species 168
9. Epithelial Dysfunction in Inflammatory Disease 168
10. Future Perspectives 170
Acknowledgments 171
References 171
Chapter 4: Innate Memory T cells 182
1. Introduction 183
2. Innate Memory T Cells Produced Through Response to Lymphopenia 185
2.1. Identification of lymphopenia-induced memory T cells 185
2.2. The role of TCR specificity on lymphopenia-induced innate memory T cell generation 188
2.3. The role of IL-7 in lymphopenia-induced innate memory T cell generation 191
2.4. Relationship between naïve T cell proliferation and generation of innate memory cells 193
3. Innate Memory CD8+ T Cells Induced by IL-4 194
3.1. A subset of NKT cells produces IL-4 to induce innate memory CD8+ T cell differentiation 196
3.2. Factors that regulate the generation of PLZF+ NKT cells and IL-4-induced memory CD8+ T cells 199
3.3. Distinctions between IL-4- and lymphopenia-induced memory CD8+ T cells 203
4. Innate Memory T Cells in Normal Homeostasis: ``Virtual Memory´´ T Cells 204
5. The Role of Innate Memory T Cells in Immunity 207
5.1. Functional properties of lymphopenia-induced memory cells 207
5.2. Functional properties of IL-4-induced memory CD8+ T cells 209
5.3. Functional properties of virtual memory CD8+ T cells 210
6. Innate Memory Cells in Humans? 211
References 213
Index 224
Contents of Recent Volumes 230
Color Plate 246

Chapter 2

Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo


Stephen J. Galli*,,1; Mindy Tsai*; Thomas Marichal*,; Elena Tchougounova§; Laurent L. Reber*; Gunnar Pejler,#    * Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
† Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
‡ GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
§ Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
¶ Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
# Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
1 Corresponding author: email address: sgalli@stanford.edu

Abstract


The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.

Keywords

Basophils

c-kit

Cre recombinase

Mouse model

Stem cell factor

1 Mast Cell Biology


1.1 Origin and tissue distribution of mast cells


Mast cells (MCs) are long-lived granulated cells derived from hematopoietic precursors; such MC progenitors ordinarily are found only in small numbers in the blood and complete their differentiation and maturation in the microenvironments of almost all vascularized tissues (Douaiher et al., 2014; Galli, Grimbaldeston, & Tsai, 2008; Gurish & Austen, 2012; Moon et al., 2010). Like cells in the monocyte lineage, mature MCs located in the tissues can proliferate after appropriate stimulation (Galli, Borregaard, & Wynn, 2011). In addition, increased recruitment, survival, and maturation of MC progenitors may also contribute to the local expansion of MC populations (Galli et al., 2008; Gurish & Austen, 2012). Stem cell factor (SCF), the ligand for Kit, is produced by structural cells in the tissues (and also by MCs) and plays a crucial role in MC development, survival, migration, and function (Douaiher et al., 2014; Galli, Zsebo, & Geissler, 1994; Gurish & Austen, 2012; Moon et al., 2010). Other growth factors (Galli et al., 2008; Gurish & Austen, 2012) that have been shown to influence MC growth and survival include interleukin (IL)-3, IL-4, IL-9, IL-10, IL-33, and TGF-β. MCs are distributed throughout nearly all tissues, and often in close proximity to potential targets of their mediators such as epithelia and glands, smooth muscle and cardiac muscle cells, fibroblasts, blood and lymphatic vessels, and nerves. Mature MCs are particularly abundant in tissues and organs exposed to the external environment, such as the skin, the lung, and the gut (Galli et al., 2008).

1.2 The spectrum of mast cell-derived mediators


MCs can store and release upon degranulation and/or secrete de novo a wide spectrum of biologically active mediators, many of which also can be produced by other cell types. During IgE-associated biologic responses, the antigen-dependent cross-linking of antigen-specific IgE bound to FcɛRI on the plasma membrane of MCs induces the aggregation of FcɛRI, thereby activating downstream signaling events that lead to the secretion of biologically active products implicated in allergic reactions (Blank & Rivera, 2004; Boyce, 2007; Galli & Tsai, 2012; Metcalfe, Peavy, & Gilfillan, 2009; Rivera, Fierro, Olivera, & Suzuki, 2008). Following antigen binding, MCs very rapidly release into the extracellular space mediators pre-stored in their cytoplasmic granules, for example, vasoactive amines (histamine and serotonin), neutral proteases (tryptases, chymases, and carboxypeptidase A3 [CPA3]), proteoglycans (e.g., heparin), and some cytokines and growth factors by a process called degranulation. A second class of secreted products is generated by de novo synthesis of proinflammatory lipid mediators, such as prostaglandins and leukotrienes. Finally, MCs are also able to synthesize and secrete a large number of growth factors, cytokines, and chemokines, e.g., IL-1, IL-6, IL-10, and TNF-α, VEGF, angiopoietin-1, TGF-β, and many others, with the types and amounts of such products that are released being influenced by factors such as the type and species of origin of the MCs, the nature of the stimulus inducing MC activation (Galli, Kalesnikoff, et al., 2005; Galli, Nakae and Tsai, 2005; Moon et al., 2010), and, in the case of IgE-dependent MC activation, whether the activation is by low- or high-affinity stimuli (Suzuki et al., 2014).

Notably, MCs can be activated to secrete biologically active products not only by IgE and specific antigen, but by a long list of other stimuli including physical agents, products of diverse pathogens (Abraham & St John, 2010), many innate danger signals (Supajatura et al., 2002), certain endogenous peptides and structurally similar peptides found in invertebrate and vertebrate venoms (Akahoshi et al., 2011; Metz et al., 2006; Schneider, Schlenner, Feyerabend, Wunderlin, & Rodewald, 2007), and products of innate and adaptive immune responses including products of complement activation (Schäfer et al., 2012), certain chemokines and cytokines (including IL-33; Enoksson et al., 2011; Lunderius-Andersson, Enoksson, & Nilsson, 2012), and immune complexes of IgG. The ability of MCs to secrete biologically active mediators can be modulated by many factors, including interactions with other granulocytes (Fantozzi et al., 1985), regulatory T cells (Gri et al., 2008), or lymphocytes (Gaudenzio et al., 2009), and certain cytokines, including the main MC development and survival growth factor, the Kit ligand, SCF (Galli, Kalesnikoff, et al., 2005; Galli, Nakae, et al., 2005; Galli, Zsebo, et al., 1994; Hill et al., 1996; Ito et al., 2012), as well as IL-33 (Komai-Koma et al., 2012) and interferon-γ (Okayama, Kirshenbaum, & Metcalfe, 2000). Many mediators which can be produced by MCs have been shown to have various positive or negative effects on the function of diverse immune or structural cells, findings which indicate that MCs at least have the potential to influence inflammation, hemostasis, tissue remodeling, cancer, metabolism, reproduction, behavior, sleep, homeostasis, and many other biological responses (Galli et al., 2008; Gilfillan & Beaven, 2011; Kennelly, Conneely, Bouchier-Hayes, & Winter, 2011; Ribatti & Crivellato, 2011).

1.3 Phenotypic heterogeneity and functional plasticity


Many phenotypic and functional characteristics of MCs, such as proliferation, survival, and ability to store and/or secrete various products, as well as the magnitude and nature of their secretory responses to particular activation signals, can be modulated or “tuned” by many environmental and genetic factors (Galli, Kalesnikoff, et al., 2005; Galli, Nakae, et al., 2005). The properties of individual MCs thus may differ depending on the genetic background of the host and/or the local or systemic levels of factors that affect various aspects of MC biology. This “plasticity” of multiple aspects of MC phenotype can result in the development of phenotypically distinct populations of MCs in various anatomic sites and in different animal species. Such altered expression of...

Erscheint lt. Verlag 26.2.2015
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete
Studium Querschnittsbereiche Infektiologie / Immunologie
ISBN-10 0-12-802432-1 / 0128024321
ISBN-13 978-0-12-802432-4 / 9780128024324
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99
Mit den neuen Preisen vom 1.10.2023

von Peter M. Hermanns; Enrico Schwartz; Katharina von Pannwitz

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
59,99