Metals for Biomedical Devices -

Metals for Biomedical Devices (eBook)

Mitsuo Niinomi (Herausgeber)

eBook Download: PDF | EPUB
2010 | 1. Auflage
440 Seiten
Elsevier Science (Verlag)
978-1-84569-924-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
205,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Despite recent advances in medical devices using other materials, metallic implants are still one of the most commercially significant sectors of the industry. Given the widespread use of metals in medical devices, it is vital that the fundamentals and behaviour of this material are understood. Metals in biomedical devices reviews the latest techniques in metal processing methods and the behaviour of this important material.
Initial chapters review the current status and selection of metals for biomedical devices. Chapters in part two discuss the mechanical behaviour, degradation and testing of metals with specific chapters on corrosion, wear testing and biocompatibility of biomaterials. Part three covers the processing of metals for biomedical applications with chapters on such topics as forging metals and alloys, surface treatment, coatings and sterilisation. Chapters in the final section discuss clinical applications of metals such as cardiovascular, orthopaedic and new generation biomaterials.
With its distinguished editor and team of expert contributors, Metals for biomedical devices is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia.
  • Reviews the latest techniques in metal processing methods including surface treatment and sterilisation
  • Examines metal selection for biomedical devices considering biocompatibility of various metals
  • Assesses mechanical behaviour and testing of metals featuring corrosion, fatigue and wear

Despite recent advances in medical devices using other materials, metallic implants are still one of the most commercially significant sectors of the industry. Given the widespread use of metals in medical devices, it is vital that the fundamentals and behaviour of this material are understood. Metals in biomedical devices reviews the latest techniques in metal processing methods and the behaviour of this important material.Initial chapters review the current status and selection of metals for biomedical devices. Chapters in part two discuss the mechanical behaviour, degradation and testing of metals with specific chapters on corrosion, wear testing and biocompatibility of biomaterials. Part three covers the processing of metals for biomedical applications with chapters on such topics as forging metals and alloys, surface treatment, coatings and sterilisation. Chapters in the final section discuss clinical applications of metals such as cardiovascular, orthopaedic and new generation biomaterials.With its distinguished editor and team of expert contributors, Metals for biomedical devices is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia.Reviews the latest techniques in metal processing methods including surface treatment and sterilisationExamines metal selection for biomedical devices considering biocompatibility of various metalsAssesses mechanical behaviour and testing of metals featuring corrosion, fatigue and wear

2

Material selection


Y. Okazaki,     National Institute of Advanced Industrial Science Technology, Japan

Abstract:


Metal material principles of orthopaedic implants are integrated in understanding the factors affecting the performance and durability. This chapter reviews aspects governing biocompatibility such as corrosion resistance and mechanical compatibility, and the related testing methods. The future perspective regarding materials and testing methodology are also considered.

Key words

orthopaedic implant

metallic materials

microstructure

corrosion resistance

fatigue property

mechanical compatibility

durability of device

testing method

2.1 Introduction


Many types of metallic biomaterial devices have widely been used to replace failed hard tissues; namely, bone screws, bone plates, compression hip screws (CHS), intramedullary fixations, short femoral nails, artificial hip joints, artificial knee joints, spinal instruments, and dental implants. Orthopaedic implants require biomechanical and biochemical compatibilities, as well as biological safety. Therefore, many types of metallic orthopaedic devices, manufactured from metallic materials with excellent mechanical properties and structural stability, are used worldwide in the orthopaedic field. In order to determine biomechanical and biochemical properties, as well as biological safety, many mechanical, chemical and biological tests are conducted during device developments. This chapter will provide the test methods for characterising the appropriate materials for metallic orthopaedic devices such as osteosynthesis and artificial joints. Recent topics on the mechanical, chemical, and biological test results of the new biocompatible materials will be introduced, with the developments of new orthopaedic devices.

2.2 Standardised implantable metals


Stainless steels, cobalt (Co)–chromium (Cr)–molybdenum (Mo) alloys, commercially pure titanium (CP Ti), and Ti alloys are widely used in orthopaedic surgery. Many types of these alloys have been standardised on the basis of international and national standards; for example, International Organisation for Standardisation (ISO), American Society for Testing and Materials (ASTM), and Japanese Industrial Standard (JIS). As well as the alloy specifications, main corrosion test methods and corrosion testing solutions for metals used for orthopaedic implants are also standardised as guides (Table 2.1).1 − 19 In the orthopaedic field, given that mechanical compatibility has an effect on the long-term clinical result, materials for these devices should have excellent mechanical strength and ductility. Figure 2.1 shows the correlations between minimum values of ultimate tensile strength (σUTS) and total elongation (T. E.) of these materials specified in ISO and JIS, namely, stainless steel, high-nitrogen stainless steel, Co–Cr–Mo alloys, and Ti materials (CP Ti and Ti alloys). The T. E. of various materials continuously decreases with increasing σUtS. The σutS of the cold-worked CP Ti grade 4 containing small amounts of oxygen (O) and iron (Fe) is close to those of the Ti alloys. The main applications of these alloys are shown in Table 2.2. Stainless steel (ISO 5832-1 and ISO 5832-9), CP Ti and Ti alloys are widely used in osteosynthesis devices, while C–28Cr–6Mo alloys are used in artificial joint bearing parts. Artificial hip joints, consisting of two types of stems and immobilising bones, with or without cement, are widely used in many countries. However, for the cement-type stem, the consumed amount of Ti alloys has tended to decrease recently. This is due to corrosion caused by micromotion between the stem and the cement mantle (formed by cement inserted into bone), particularly when less-stiff Ti alloy is used for the artificial hip stem.20 In contrast, the Co–28Cr–6Mo alloy and high-nitrogen (N) stainless steel, with high strength and stiffness, has become the most popular cement-type stem material. On the other hand, for the cementless stem, the use of Ti alloy with high biocompatibility has become popular. Figure 2.2 shows the relationship between σUTS and Vickers hardness with tensile test specimens (diameter: 1.5 or 3 mm, gauge length: 9 or 15 mm) taken from orthopaedic devices: bone plates, compression hip screws (CHS), intramedullary rods, short femoral nails, artificial hip stems, artificial knee femoral components, and tibial stems. The σUTS of forged Co–28Cr–6Mo alloys and stainless steels used for artificial hip stems is very high. Figure 2.3 shows typical optical micrographs and transmission electron microscopy (TEM) images of the hot-forged Co–28Cr–6Mo alloy and cold-worked high-nitrogen stainless steel (ISO 5832–9) used for the cement-type stem. In the TEM images of hot-forged Co–28Cr–6Mo alloys, much finer fcc γ (gamma) structures are observed. For high-carbon Co–28Cr–6Mo alloys, M23C6 carbide precipitates in the γ matrix.21 In cold-worked high-nitrogen stainless steel, CrNbN precipitation is observed in the fine austenitic (γ) phase in Fig. 2.3(d).22

Table 2.1

Implantable metals and the testing methods specified in ISO and JIS standards

Standard Metals and testing methods
ISO 5832-1 Wrought 18Cr–14Ni–2Mn–2.5Mo stainless steel
ISO 5832-9 Wrought high-N 21Cr–10Ni–3Mn–2.5Mo stainless steel
ISO 5832-4 Co–28Cr–6Mo casting alloy
ISO 5832-5 Wrought Co–20Cr–15 W–10Ni alloy
ISO 5832-6 Wrought Co–35Ni–20Cr–10Mo alloy
ISO 5832-7 Forgeable and cold-formed 41Co–20Cr–16Ni–7Mo–Fe alloy
ISO 5832-8 Wrought Co–20Ni–20Cr–3.5Mo–3.5 W–5Fe alloy
ISO 5832-12 Wrought Co–28Cr–6Mo alloy
ISO 5832-2 Unalloyed titanium
ISO 5832-3 Wrought Ti–6Al–4 V alloy
ISO 5832-11 Wrought Ti–6Al–7Nb alloy
ISO 5832-14 Wrought Ti–15Mo–5Zr–3Al alloy
JIS T 7401-4 Wrought Ti–15Zr–4Nb–4Ta alloy
ISO 16428 Test solutions and environmental conditions for static and dynamic corrosion tests on implantable materials and medical devices
ISO 16429 Measurements of open-circuit potential to assess corrosion behaviour of metallic implantable materials and medical devices over extended time periods
JIS T 0302 Testing method for corrosion resistance of metallic biomaterials by anodic polarisation measurement
JIS T 0304 Testing method for metal release from metallic biomaterials
JIS T 0305 Testing method for galvanic corrosion in pseudo-physiological solution
JIS T 0306 Analysis of state for passive film formed on metallic biomaterials by X-ray photoelectron spectroscopy

Table 2.2

Main metallic materials used in orthopaedic implants

Figure 2.1 Relationship between minimum values for ultimate tensile strength and total elongation of implantable metals specified in ISO and JIS.
(a), (b) Stainless steel (ISO 5832–1: 18Cr–14Ni–2Mn–2.5Mo), high–N stainless steel (21Cr–10Ni–2.5Mo–3Mn–0.3 N),
(c) Co–Cr–Mo (O: Co–28Cr–6Mo, : Co–35Ni–20Cr–10Mo, : Co– 20Cr–15 W–10Ni, : 41Co–16Ni–20Cr–7Mo–16Fe, ∆: Co–2Ni–20Cr– 3.5Mo–3.5 W–5Fe)
(d) Ti materials (commercially pure Ti grade 1, grade 2, grade 3, grade 4 and cold-worked grade 4, and annealed Ti–6Al–4 V, Ti–6Al– 7Nb, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta alloys).

Figure 2.2 Relationship between ultimate tensile strength (σUTS) and Vickers hardness (10 N) with specimens taken from osteosynthesis devices, and artificial hip and knee joints.

Figure 2.3 Optical micrographs (a), (c), and TEM images (b), (d) of hot- forged...

Erscheint lt. Verlag 31.3.2010
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Maschinenbau
Technik Medizintechnik
ISBN-10 1-84569-924-6 / 1845699246
ISBN-13 978-1-84569-924-6 / 9781845699246
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 8,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich