Tissue Engineering -  Clemens van Blitterswijk,  Jan De Boer

Tissue Engineering (eBook)

eBook Download: PDF | EPUB
2014 | 2. Auflage
896 Seiten
Elsevier Science (Verlag)
978-0-12-420210-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
150,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students coming to the subject for the first time. In addition to the key topics covered in the previous edition, this update also includes new material on the regulatory authorities, commercial considerations as well as new chapters on microfabrication, materiomics and cell/biomaterial interface.


  • Effectively reviews major foundational topics in tissue engineering in a clear and accessible fashion
  • Includes state of the art experiments presented in break-out boxes, chapter objectives, chapter summaries, and multiple choice questions to aid learning
  • New edition contains material on regulatory authorities and commercial considerations in tissue engineering


Prof. Clemens A. van Blitterswijk is Professor of Tissue Regeneration at Maastricht University, heading up one of the leading European labs in the field of Tissue Engineering and Regenerative Medicine. He combines his professorship with being Founding Partner of the new LSP-Health Economics Fund of the European health care investment group Life Sciences Partners in Amsterdam. During his career Prof. van Blitterswijk has authored and co-authored ca. 400 scientific papers. He has co-founded multiple biomedical companies and is one of the highest ranking Dutch scientists under the most frequently cited in Materials Science. He has won numerous awards for his work, including the George Winter Award. of the European Society for Biomaterials, the Career Achievement Award of Termis and is a member of the Royal Netherlands Academy of Arts and Sciences.
Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students coming to the subject for the first time. In addition to the key topics covered in the previous edition, this update also includes new material on the regulatory authorities, commercial considerations as well as new chapters on microfabrication, materiomics and cell/biomaterial interface. Effectively reviews major foundational topics in tissue engineering in a clear and accessible fashion Includes state of the art experiments presented in break-out boxes, chapter objectives, chapter summaries, and multiple choice questions to aid learning New edition contains material on regulatory authorities and commercial considerations in tissue engineering

Front 
1 
Tissue 
4 
Copyright 5
Contents 6
Contributors 26
Preface 32
Chapter 1 - Tissue Engineering: An Introduction 34
REFERENCES 53
Chapter 2 - Stem Cells 56
LEARNING OBJECTIVES 56
2.1 INTRODUCTION 56
2.2 DIFFERENTIATION 63
2.3 CHARACTERIZATION OF STEM CELLS: SURFACE PROTEIN EXPRESSION 64
2.4 CHARACTERIZATION OF STEM CELLS: GENE EXPRESSION 65
2.5 METASTABLE STATES OF STEM CELLS 69
2.6 PLURIPOTENT STEM CELLS 69
2.7 MULTIPOTENT STEM CELLS 78
2.8 STEM CELLS IN SKIN EPITHELIA 87
2.9 STEM CELLS IN THE INTESTINE 88
2.10 STEM CELLS IN THE CENTRAL NERVOUS SYSTEM 90
2.11 FUTURE PERSPECTIVES 92
2.12 SUMMARY 92
RECOMMENDED READING 94
REFERENCES 95
Chapter 3 - Tissue Formation during Embryogenesis 100
LEARNING OBJECTIVES 100
3.1 INTRODUCTION 101
3.2 CARDIAC DEVELOPMENT 106
3.3 BLOOD VESSEL DEVELOPMENT 111
3.4 DEVELOPMENT OF PERIPHERAL NERVE TISSUE 115
3.5 EMBRYONIC SKIN DEVELOPMENT 118
3.6 SKELETAL FORMATION 128
3.7 FUTURE DIRECTIONS 137
3.8 SUMMARY 137
Chapter 4 - Cellular Signaling 144
LEARNING OBJECTIVES 144
4.1 GENERAL INTRODUCTION 144
4.2 CELLULAR SIGNALING IN SKIN BIOLOGY 159
4.3 CELLULAR SIGNALING IN VASCULAR BIOLOGY 163
4.4 CELLULAR SIGNALING IN BONE BIOLOGY 167
4.5 CELLULAR SIGNALING IN SKELETAL MUSCLE 171
4.6 FUTURE DEVELOPMENTS 174
4.7 SNAPSHOT SUMMARY 175
RECOMMENDED READING 179
REFERENCES 179
Chapter 5 - Extracellular Matrix as a Bioscaffold for Tissue Engineering 182
LEARNING OBJECTIVES 182
5.1 INTRODUCTION 182
5.2 NATIVE EXTRACELLULAR MATRIX 183
5.3 ECM SCAFFOLD PREPARATION 192
5.4 CONSTRUCTIVE TISSUE REMODELING 194
5.5 CLINICAL TRANSLATION OF ECM BIOSCAFFOLDS 198
COMPOSED OF ECM 200
5.7 FUTURE CONSIDERATIONS 201
5.8 SUMMARY 202
Chapter 6 - Degradation of Biomaterials 210
LEARNING OBJECTIVES 210
6.1 DEGRADABLE BIOCERAMICS 210
6.2 BIODEGRADABLE POLYMERS 225
6.3 FUTURE PERSPECTIVES FOR DEGRADABLE BIOMATERIALS IN TISSUE ENGINEERING 241
6.4 SUMMARY 241
REFERENCES 244
Chapter 7 - Cell–Material Interactions 250
LEARNING OBJECTIVES 250
7.1 INTRODUCTION 251
7.2 SURFACE CHEMISTRY 261
7.3 SURFACE TOPOGRAPHY 267
7.4 MATERIAL MECHANICS (STIFFNESS) 271
7.5 SUMMARY 275
REFERENCES 279
FURTHER READING 284
Chapter 8 - Materiomics: A Toolkit for Developing New Biomaterials 286
LEARNING OBJECTIVES 286
8.1 INTRODUCTION: WHAT IS MATERIOMICS? 286
8.2 WHY DO WE NEED NEW BIOMATERIALS 288
8.3 THE SIZE OF CHEMICAL SPACE 288
8.4 DESIGN OF EXPERIMENTS/GENETIC EVOLUTION/PARALLELS TO DRUG DISCOVERY 289
8.5 HIGH-THROUGHPUT EXPERIMENTAL METHODS 292
8.6 COMPUTATIONAL MODELING 299
8.7 FUTURE PERSPECTIVE 307
8.8 SUMMARY 308
REFERENCES 310
Chapter 9 - Microfabrication Technology in Tissue Engineering 316
LEARNING OBJECTIVES 316
9.1 INTRODUCTION 316
9.2 MICROFABRICATION TECHNIQUES IN TISSUE ENGINEERING 318
9.3 CONCLUSION AND FUTURE PERSPECTIVE 336
9.4 SUMMARY 338
RECOMMENDED READING 341
REFERENCES 341
Chapter 10 - Scaffold Design and Fabrication 344
LEARNING OBJECTIVES 344
10.1 INTRODUCTION 344
10.2 SCAFFOLD DESIGN 347
10.3 CLASSICAL SCAFFOLD FABRICATION TECHNIQUES 354
10.4 ELECTROSPINNING 359
10.5 ADDITIVE MANUFACTURING 363
10.6 CONCLUSION AND FUTURE DIRECTIONS 373
RECOMMENDED READING 375
REFERENCES 375
Chapter 11 - Controlled Release Strategies in Tissue Engineering 380
LEARNING OBJECTIVES 380
11.1 INTRODUCTION 380
11.2 BIOACTIVE FACTORS ADMIXED WITH MATRICES 389
WITHIN GEL MATRICES 395
11.4 BIOACTIVE FACTORS ENTRAPPED WITHIN HYDROPHOBIC SCAFFOLDS OR MICROPARTICLES 401
11.5 BIOACTIVE FACTORS BOUND TO AFFINITY SITES WITHIN MATRICES 405
TO MATRICES 408
11.7 MATRICES USED FOR IMMUNOMODULATION 411
11.8 SUMMARY 415
REFERENCES 419
Chapter 12 - Bioreactors: Enabling Technologies for Research and Manufacturing 426
LEARNING OBJECTIVES 426
12.1 INTRODUCTION 426
12.2 ENABLING TOOLS FOR TISSUE ENGINEERS 428
12.3 BIOREACTOR-BASED IN VITRO MODEL SYSTEMS 438
12.4 BIOREACTORS AS TISSUE MANUFACTURING DEVICES 442
12.5 CONCLUSIONS AND FUTURE PERSPECTIVES 450
12.6 SNAPSHOT SUMMARY 451
REFERENCES 454
Chapter 13 - Clinical Grade Production of Mesenchymal Stromal Cells 460
LEARNING OBJECTIVES 460
13.1 INTRODUCTION 460
13.2 ISOLATION OF BM-MSCS 467
13.3 CULTURE EXPANSION 472
13.4 CHARACTERIZATION OF CULTURE-EXPANDED MSCS 479
13.5 CRYOPRESENTATION 484
13.6 PRODUCTION OF CLINICAL GRADE MSCS 489
13.7 DONOR VARIABILITY AND DONOR-RELATED PARAMETERS AFFECTING IN VITRO PROPERTIES AND EXPANSION ABILITY OF MSCS 491
13.8 RELATIONSHIP BETWEEN IN VITRO ASSAYED MSC PROPERTIES AND THEIR POSSIBLE IN VIVO FUNCTION 491
13.9 FUTURE PERSPECTIVES 493
13.10 SNAPSHOT SUMMARY 496
FURTHER READING 497
REFERENCES 498
Chapter 14 - Vascularization, Survival, and Functionality of Tissue-Engineered Constructs 504
LEARNING OBJECTIVES 504
14.1 INTRODUCTION 504
14.2 STRATEGIES TO IMPROVE VASCULAR INGROWTH INTO TISSUE-ENGINEERED CONSTRUCTS 508
14.3 PREVASCULARIZATION STRATEGIES 513
14.4 STRATEGIES TO IMPROVE CELL SURVIVAL 518
14.5 IN VIVO MODELS 518
14.6 CONCLUSION/OUTLOOK 523
14.7 SUMMARY 525
References 526
Chapter 15 - Skin Engineering and Keratinocyte Stem Cell Therapy 530
LEARNING OBJECTIVES 530
15.1 INTRODUCTION 530
15.2 STRUCTURE OF THE EPIDERMIS 531
15.3 KERATINS 533
15.4 STRUCTURE OF THE DERMOEPIDERMAL JUNCTION 533
15.5 IN VITRO KERATINOCYTE CULTURE 535
15.6 IMMUNOGENICITY AND CULTURED KERATINOCYTES 538
15.7 DEVELOPMENT OF IN VIVO SOMATIC KERATINOCYTE STEM CELL GRAFTING 538
15.8 POOR KERATINOCYTE “TAKE” 539
15.9 ENHANCED DERMAL GRAFTING 541
15.10 THE USE OF ADULT STEM CELLS IN TISSUE-ENGINEERED SKIN 548
15.11 THE FUTURE OF TISSUE-ENGINEERED SKIN 554
15.12 SUMMARY 555
RECOMMENDED READING 557
REFERENCES 557
Chapter 16 - Cartilage and Bone Regeneration 562
LEARNING OBJECTIVES 562
16.1 INTRODUCTION: CARTILAGE 562
16.2 CELLULAR STRUCTURES AND MATRIX COMPOSITION OF HYALINE CARTILAGE 564
16.3 COLLAGEN 565
16.4 PROTEOGLYCANS 565
16.5 THE CHONDROCYTE 568
16.6 STEM CELLS IN CARTILAGE AND PROLIFERATION OF CHONDROCYTES 568
16.7 PATHOPHYSIOLOGY OF CARTILAGE LESION DEVELOPMENT 569
16.8 ARTIFICIAL INDUCTION OF CARTILAGE REPAIR 571
16.9 RATIONALE FOR CELL IMPLANTATION 572
16.10 CARTILAGE SPECIMENS FOR IMPLANTATION 573
16.11 CELL SEEDING DENSITY 574
16.12 WHAT TYPE OF CHONDROGENIC CELLS ARE IDEAL FOR CARTILAGE ENGINEERING? 575
16.13 ALLOGENEIC VERSUS AUTOLOGOUS CELLS 575
16.14 ARTICULAR CHONDROCYTES VERSUS OTHER CELLS 575
16.15 EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT STEM CELLS 576
16.16 XENOGRAFT CELLS 577
16.17 DIRECT ISOLATION OF TISSUE 578
16.18 SCAFFOLDS IN CARTILAGE TISSUE ENGINEERING 578
16.19 BIOREACTORS IN CARTILAGE TISSUE ENGINEERING 581
16.20 GROWTH FACTORS THAT STIMULATE CHONDROGENESIS 582
16.21 FUTURE DEVELOPMENTS IN CARTILAGE BIOLOGY 582
16.22 INTRODUCTION: BONE—BASIC BONE BIOLOGY: STRUCTURE, FUNCTION, AND CELLS 583
16.23 BONE COMPOSITION 584
16.24 BONE FORMATION 587
16.25 INTRAMEMBRANOUS OSSIFICATION 587
16.26 ENDOCHONDRAL OSSIFICATION 588
16.27 FRACTURE REPAIR 588
16.28 SKELETAL STEM CELLS 589
16.29 EXPANSION AND DIFFERENTIATION 593
16.30 GROWTH FACTORS FOR BONE REPAIR 593
16.31 SCAFFOLD BIOCOMPATIBILITY 599
16.32 THE FUNCTION OF THE VASCULATURE IN SKELETAL REGENERATION 600
16.33 ANIMAL MODELS IN BONE TISSUE ENGINEERING 602
16.34 CURRENT STATUS OF BONE TISSUE ENGINEERING 603
16.35 FUTURE PERSPECTIVES FOR BONE REGENERATION 606
16.36 SUMMARY 607
REFERENCES 611
Chapter 17 - Tissue Engineering of the Nervous System 616
LEARNING OBJECTIVES 616
17.1 INTRODUCTION 616
17.2 PERIPHERAL NERVE 617
17.3 CNS: SPINAL CORD 628
17.4 CNS: OPTIC NERVE 641
17.5 CNS: RETINA 642
17.6 CNS: BRAIN 645
17.7 NEUROPROSTHESES 647
17.8 FUTURE APPROACHES 649
17.9 SUMMARY 651
RECOMMENDED READING 655
REFERENCES 655
Chapter 18 - Principles of Cardiovascular Tissue Engineering 660
LEARNING OBJECTIVES 660
18.1 INTRODUCTION 660
18.2 HEART STRUCTURE, DISEASE, AND REGENERATION 661
18.3 CELL SOURCES FOR CARDIOVASCULAR TISSUE ENGINEERING AND REGENERATION 666
18.4 BIOMATERIALS—POLYMERS, SCAFFOLDS, AND BASIC DESIGN CRITERIA 668
OR BIOACTIVE MOLECULE DELIVERY 672
18.6 BIOENGINEERING OF CARDIAC PATCHES, IN VITRO 676
18.7 VASCULARIZATION OF CARDIAC PATCHES 687
18.8 BIOENGINEERING OF BLOOD VESSELS 693
18.9 IN SITU TISSUE RECONSTRUCTION BY INJECTABLE ACELLULAR BIOMATERIALS 704
18.10 CONCLUSIONS AND FUTURE PERSPECTIVES 707
18.11 SUMMARY 708
RECOMMENDED READING 709
REFERENCES 710
Chapter 19 - Tissue Engineering of Organ Systems 718
LEARNING OBJECTIVES 718
19.1 INTRODUCTION 718
19.2 UROGENITAL TISSUE ENGINEERING 720
19.3 LIVER TISSUE ENGINEERING 726
19.4 GASTROINTESTINAL TISSUE ENGINEERING 730
19.5 PANCREAS TISSUE ENGINEERING 733
19.6 LUNG TISSUE ENGINEERING 738
19.7 FUTURE DEVELOPMENTS 740
19.8 SUMMARY 742
References 746
Chapter 20 - Organs-on-a-Chip 750
LEARNING OBJECTIVES 750
20.1 INTRODUCTION 750
20.2 CONCEPT OF ORGAN-ON-A-CHIP 751
20.3 EXAMPLES OF ORGAN-ON-A-CHIP 756
20.4 CONCLUSION 772
20.5 SUMMARY 774
REFERENCES 777
Chapter 21 - Product and Process Design: Toward Industrial TE Manufacturing 780
LEARNING OBJECTIVES 780
21.1 INTRODUCTION 780
21.2 BIOREACTOR SYSTEMS FOR TE PRODUCT MANUFACTURING 787
21.3 QUALITY CONTROL FOR TE PRODUCTS—A MULTISCALE APPROACH 790
TE CONSTRUCT QUALITY ATTRIBUTES 791
21.5 ENHANCING IN VIVO PERFORMANCE: AN IN SILICO MEDIATED APPROACH FOR TE PRODUCT DESIGN 795
21.6 DOWNSTREAM PROCESSING IN TE MANUFACTURING 799
21.7 TOWARD EFFICIENT TE PRODUCT TRANSLATION 802
21.8 SNAPSHOT SUMMARY 805
REFERENCES 808
SUGGESTED PAPERS 813
Chapter 22 - Clinical Translation 816
LEARNING OBJECTIVES 816
22.1 INTRODUCTION 816
22.2 CLINICAL TRANSLATION OF TISSUE-ENGINEERED PRODUCTS 821
22.3 TYPICAL CHALLENGES FOR TISSUE ENGINEERING ENCOUNTERED IN THE CLINICAL PHASE 824
22.4 IMPLEMENTATION OF A CLINICAL TRIAL 829
22.5 SPECIAL POINTS TO CONSIDER 834
22.6 CONCLUSION AND FUTURE PERSPECTIVES 836
22.7 SNAPSHOT SUMMARY 837
REFERENCES 838
Chapter 23 - Ethical Issues in Tissue Engineering 842
LEARNING OBJECTIVES 842
23.1 INTRODUCTION 842
23.2 MORALITY, ETHICS, AND VALUES 843
OF MATERIAL FOR TISSUE ENGINEERING 847
AND NEW DANGERS 857
23.5 SOME QUESTIONS FOR THE FUTURE 862
23.6 NOTES 862
REFERENCES 870
Index 872

Contributors


M. Adelaide Asnaghi,     Departments of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland

Jean-Marie Aerts

Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium

Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium

Enateri V. Alakpa,     Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK

Morgan R. Alexander,     Laboratory of Biophysics and Surface Analysis, University of Nottingham, Nottingham, UK

Mauro Alini,     Musculoskeletal Regeneration, AO Research Institute Davos, Davos, Switzerland

Jessica J. Alm,     Center for Hematology and Regenerative Medicine and Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

Anthony Atala,     Department of Urology, Wake Forest University School of Medicine, Winston–Salem, NC, USA

Stephen F. Badylak

McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

Florence Barrère-de Groot,     Xpand Biotechnology BV, 3723 MB Bilthoven, The Netherlands

Cameron Black,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom

Mats Brittberg,     Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy University of Gothenburg, Sweden

Chaenyung Cha,     School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea

Smadar Cohen

The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

The Center for Regenerative Medicine and Stem Cell (RMSC) Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel

The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Matthew J. Dalby,     Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK

Paul D. Dalton,     Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Germany

Noel L. Davison

MIRA Institute for Biomedical Technology and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands

Xpand Biotechnology BV, 3723 MB Bilthoven, The Netherlands

Jonathan I. Dawson,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom

Jan de Boer,     Department for Cell Biology-inspired Tissue Engineering, Merlin Institute, Maastricht University, Maastricht, The Netherlands

Marco C. DeRuiter,     Department of Clinical and Experimental Anatomy, Leiden University Medical Centre, Leiden, The Netherlands

Adam J. Engler,     Department of Bioengineering, University of California, San Diego, USA

Liesbet Geris

Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium

Biomechanics Research Unit, Universite de Liège, Liège, Belgium

Susan Gibbs,     Department of Dermatology, VU Medical Centre, Amsterdam, The Netherlands

David Gibbs,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom

Adriana C. Gittenberger-de Groot,     Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands

Dirk W. Grijpma

MIRA Institute for Biomedical Technology and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands

Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Chungmin Han,     Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea

Alan R. Harvey,     School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia

Marietta Herrmann,     Musculoskeletal Regeneration, AO Research Institute Davos, Davos, Switzerland

Beerend P. Hierck,     Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands

Andrew L. Hook,     Laboratory of Biophysics and Surface Analysis, University of Nottingham, Nottingham, UK

Jeffrey A. Hubbell,     Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Dietmar W. Hutmacher,     Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

Johan Joly,     Division of Rheumatology, UZ Leuven, Leuven, Belgium

Janos Kanczler,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom

Marcel Karperien,     Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands

Candace Kerr,     Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA

Ali Khademhosseini,     Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA

Joseph M. Labuz

Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA

Biointerfaces Institute, University of Michigan, NCRC, MI, USA

Toon Lambrechts

Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium

Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium

Vanessa L.S. LaPointe,     Department for Cell Biology-inspired Tissue Engineering, Merlin Institute, Maastricht University, Maastricht, The Netherlands

Matthias W. Laschke,     Institute for Clinical & Experimental Surgery, University of Saarland, Homburg, Saarland, Germany

Katarina Le Blanc,     Center for Hematology and Regenerative Medicine and Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

Shulamit Levenberg,     Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Anders Lindahl,     Department of Clinical Chemistry and Transfusion Medicine Institute of Biomedicine, The Sahlgrenska Academy University of Gothenburg, Sweden

Ricardo Londono

McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Frank P. Luyten

Division of Rheumatology, UZ Leuven, Leuven, Belgium

Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium

Athanasios Mantalaris,     Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK

Ivan Martin,     Departments of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland

Mikaël M. Martino,     World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka...

Erscheint lt. Verlag 15.12.2014
Sprache englisch
Themenwelt Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Bauwesen
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-420210-1 / 0124202101
ISBN-13 978-0-12-420210-8 / 9780124202108
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 87,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 49,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich