Marine Carbohydrates: Fundamentals and Applications brings together the diverse range of research in this important area which leads to clinical and industrialized products. The volume, number 73, focuses on marine carbohydrates in isolation, biological, and biomedical applications and provides the latest trends and developments on marine carbohydrates. Advances in Food and Nutrition Research recognizes the integral relationship between the food and nutritional sciences and brings together outstanding and comprehensive reviews that highlight this relationship. Volumes provide those in academia and industry with the latest information on emerging research in these constantly evolving sciences. - Includes the isolation techniques for the exploration of the marine habitat for novel polysaccharides- Discusses biological applications such as antioxidant, antiallergic, antidiabetic, antiobesity and antiviral activity of marine carbohydrates- Provides an insight into present trends and approaches for marine carbohydrates
Front Cover 1
Marine Carbohydrates: Fundamentals and Applications, Part B 4
Copyright 5
Contents 6
Contributors 10
Preface 12
Chapter One: Marine-Derived Polysaccharides for Regulation of Allergic Responses 14
1. Introduction 15
2. Marine Polysaccharides 16
2.1. Alginate 16
2.2. Porphyran 17
2.3. Fucoidans 17
2.4. Chitin and its derivatives 18
3. Pharmacological Properties of Marine Polysaccharides for Modulation of Allergic Responses 19
3.1. Alginic acid 19
3.2. Porphyran 20
3.3. Fucoidans 20
3.4. Chitin 21
3.5. Chitosan nanoparticles 22
3.6. Chitooligosaccharides 23
4. Conclusion 23
References 24
Chapter Two: Antioxidant Effects of Chitin, Chitosan, and Their Derivatives 28
1. Introduction 28
2. Antioxidants and Oxidative Stress 30
3. Antioxidant Activity of Chitin, Chitosan, and Their Derivatives 30
3.1. Antioxidant activity of chitin and chitosan 30
3.2. Antioxidant activity of chito-oligomers and its derivatives 35
4. Conclusion 39
Acknowledgments 40
References 40
Chapter Three: Antidiabetic Activities of Chitosan and Its Derivatives: A Mini Review 46
1. Introduction 46
2. Derivatization 48
3. Antidiabetics and Antiobesity Applications 49
3.1. Indirect activity 49
3.2. Direct activity 51
4. Conclusion 54
References 54
Chapter Four: Role of Alginate in Bone Tissue Engineering 58
1. Introduction 59
2. Alginate General Properties 59
2.1. Structure 59
2.2. Molecular weight and solubility 60
2.3. Biocompatibility 61
3. Tissue Engineering 61
3.1. Bone TE 61
4. Alginate in Bone TE 62
4.1. Alginate scaffolds in bone TE 62
4.2. Alginate hydrogels in bone TE 65
5. Future Prospects 66
6. Conclusion 67
Acknowledgments 67
References 67
Chapter Five: Chitin and Chitosan Composites for Bone Tissue Regeneration 72
1. Introduction 73
2. Naturally Occurring Biopolymers 73
2.1. Chitin 73
2.2. Chitosan 74
3. Tissue Engineering Applications of Chitin and Chitosan 74
4. Applications of Chitin and Chitosan for Bone Tissue Engineering 77
5. Future Prospects 89
6. Conclusions 89
Acknowledgments 89
References 89
Chapter Six: Chemical Modification of Chitosan for Efficient Gene Therapy 96
1. Introduction 97
2. Ligand Modification for Specific Cell Targeting 98
2.1. Galactose ligand modification 98
2.2. Folate ligand modification 99
2.3. Mannose ligand modification 101
2.4. Hyaluronic acid ligand modification 103
3. Stimuli-Response Modification for Enhancement of Transfection Efficiency 103
3.1. pH-sensitive modification 103
3.1.1. Imidazole modification 104
3.1.2. PEI modification 105
3.2. Thiolated modification 105
3.3. Amino acid modification 107
3.4. Magnetic modification 107
4. Penetrating Modification 108
4.1. Brain-blood barrier penetrating modification 108
4.2. Cell penetration peptide modification 109
4.3. Penetration of nuclear membrane 109
5. Conclusion 110
References 110
Chapter Seven: Marine Carbohydrates of Wastewater Treatment 116
1. Introduction 117
1.1. Sources of wastewater 118
1.2. Composition of wastewater 118
1.3. Wastewater treatment 120
2. Materials Used for Wastewater Treatment 123
2.1. Chitin 124
2.2. Chitosan 125
2.3. Alginate 127
2.4. Agar 129
2.5. Carrageenan 130
3. Application of Marine Polysaccharides in Wastewater Treatment 131
3.1. Chitin 131
3.2. Chitosan 133
3.3. Alginate 136
3.4. Carrageenan and agar 139
4. Advantages and Possible Drawbacks of Using Marine Polysaccharide-Based Materials for Adsorption 140
4.1. Advantages 140
4.2. Limitations 141
5. Future Prospects 141
6. Conclusions 142
Acknowledgments 142
References 142
Chapter Eight: Industrial Applications of Marine Carbohydrates 158
1. Introduction 159
1.1. Marine carbohydrates 159
1.2. General structures and terminology 160
1.3. Production of carbohydrates by marine organisms 161
1.4. Analysis of marine carbohydrates 162
1.4.1. Agar 162
1.4.2. Alginates 163
1.4.3. Carrageenan 164
1.4.4. Chitin and chitosan 166
1.5. Carbohydrates in sediments 169
2. Applications of Marine Carbohydrates 169
2.1. In cosmetics 170
2.2. In food and agricultural field 170
2.3. In pharmaceutics 173
2.4. In biotechnology and microbiology 179
2.5. In treatment of industrial effluent 180
3. Future Directions for Research 183
4. Conclusion 184
Acknowledgments 184
References 184
Chapter Nine: Nutraceutical and Pharmacological Implications of Marine Carbohydrates 196
1. Introduction 196
2. Marine Carbohydrate Sources 197
3. Marine Carbohydrates as Nutraceuticals 201
4. Marine Carbohydrates as Pharmaceuticals 202
5. Conclusion 204
References 204
Further Reading 208
Chapter Ten: Pharmaceutical, Cosmeceutical, and Traditional Applications of Marine Carbohydrates 210
1. Introduction 211
1.1. Resource of marine carbohydrate 211
1.2. Marine carbohydrate market value 212
1.3. Special areas of conservation 214
2. Pharmaceutical Products and Biological Application 215
2.1. Blood coagulation system 216
2.2. Anticancer activity 217
2.3. Antioxidant activity 218
2.4. Antiviral activity 220
2.5. Antilipidemic activity 221
2.6. Immunomodulating effect 221
3. Cosmeceutical Products and Functional Applications 222
3.1. Fucoidan 222
3.2. Carrageenan 225
3.3. Alginates 226
4. Marine Food and Traditional Application 226
4.1. Marine food carbohydrates and fibers derived as an antioxidants and their antioxidative activity 226
4.1.1. Chitooligosaccharide derivatives 227
4.1.2. Sulfated polysaccharides 227
4.1.3. Carotenoids 227
4.2. Thickeners, stabilizers, and emulsifiers 228
5. Conclusion 228
Acknowledgment 229
References 229
Chapter Eleven: Algal and Microbial Exopolysaccharides: New Insights as Biosurfactants and Bioemulsifiers 234
1. Introduction 235
2. Defining Biosurfactants 237
2.1. Definition and characteristics 237
3. Microalgae: The New and Novel Bioemulsifiers 239
4. Biosynthesis Exemplified in Diatoms and Cyanobacteria 239
5. Cyanobacteria: A Prolific Source of EPS. The Case of Emulcyan 242
6. Diatoms: Photosynthetic Production of Complex EPSs 243
7. EPS: The Genesis in Building Biofilms 246
8. Seaweed Polysaccharides 247
9. Biosurfactants/Bioemulsifiers in Foods. The Marine Alternative 250
9.1. Probiotics EPSs 251
10. Biosurfactants for Sustainable Bioremediation 252
11. The Biosurfactants from Extreme Environments and Deep Sea 255
11.1. EPS from the deep sea 257
11.2. Polysaccharides from marine animals 259
11.3. Marine sources of EPS: The highest source for foods and dietary fibers 260
12. Expectatives and Concluding Remarks 261
References 263
Further Reading 270
Chapter Twelve: Complex Carbohydrates as a Possible Source of High Energy to Formulate Functional Feeds 272
1. Introduction 273
2. Carbohydrates 274
3. Complex Carbohydrates 274
4. Oligosaccharides and NSP 276
5. Polysaccharides 279
5.1. Terrestrial polysaccharides 280
5.2. Marine polysaccharides 281
6. Enzymes and Digestibility 283
7. Prebiotic Ingredients 287
8. Probiotic Bacteria 289
9. Functional Feeds 290
9.1. Definition 291
9.2. Study cases, functional benefits, and usage suggestions 292
9.2.1. Research in pigs 292
9.2.2. Research in poultry 293
9.2.3. Research in fish 294
9.2.4. Research in shrimps 295
References 296
Further Reading 301
Index 302
Antioxidant Effects of Chitin, Chitosan, and Their Derivatives
Dai-Hung Ngo*; Se-Kwon Kim*,†,1 * Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea
† Department of Chemistry, Pukyong National University, Busan, South Korea
1 Corresponding author: email address: sknkim@pknu.ac.kr
Abstract
Chitin, chitosan, and their derivatives are considered to promote diverse activities, including antioxidant, antihypertensive, anti-inflammatory, anticoagulant, antitumor and anticancer, antimicrobial, hypocholesterolemic, and antidiabetic effects, one of the most crucial of which is the antioxidant effect. By modulating and improving physiological functions, chitin, chitosan, and their derivatives may provide novel therapeutic applications for the prevention or treatment of chronic diseases. Antioxidant activity of chitin, chitosan, and their derivatives can be attributed to in vitro and in vivo free radical-scavenging activities. Antioxidant effect of chitin, chitosan, and their derivatives may be used as functional ingredients in food formulations to promote consumer health and to improve the shelf life of food products. This chapter presents an overview of the antioxidant activity of chitin, chitosan, and their derivatives with the potential utilization in the food and pharmaceutical industries.
Keywords
Chitin
Chitosan
Chitosan derivatives
Antioxidant
Free radical scavenging
1 Introduction
Chitin is the second most abundant biopolymer on earth after cellulose and one of the most abundant polysaccharides. It is a glycan of β(1 → 4)-linked N-acetylglucosamine units, and it is widely distributed in crustaceans and insects as the protective exoskeleton and cell walls of most fungi. Chitin is usually prepared from the shells of crustaceans such as crab, shrimp, and crawfish (Jayakumara, Prabaharan, Nair, & Tamura, 2010; Muzzarelli, 1997).
Chitosan is a natural nontoxic biopolymer produced by alkaline deacetylation of chitin. Chitin and chitosan are insoluble in water as well as in most organic solvents, which is the major limiting factor for their utilization in living systems. Hence, it is important to produce soluble chitin or chitosan by several methods such as acidic and enzymatic hydrolysis. Chito-oligomers (COSs) are chitosan derivatives (polycationic polymers comprised principally of glucosamine units) and can be generated via either chemical or enzymatic hydrolysis of chitosan. COSs are of great interest in pharmaceutical and medicinal applications due to their noncytotoxic and high water-soluble properties. Various activities of COSs are affected by degree of deacetylation (DD), molecular weight (MW), or chain length (Jayakumar et al., 2010; Kim, Ngo, & Rajapakse, 2006; Muzzarelli, Stanic, & Ramos, 1999; Razdan & Pettersson, 1994).
Chitin, chitosan, and their derivatives have important biological properties in medicinal and pharmaceutical applications such as antioxidative (Aytekin, Morimura, & Kida, 2011; Kim & Ngo, 2013; Ying, Xiong, Wang, Sun, & Liu, 2011), antiallergy (Vo, Kim, Ngo, Kong, & Kim, 2012; Vo, Kong, & Kim, 2011; Vo, Ngo, & Kim, 2012), anti-inflammatory (Lee, Senevirathne, Ahn, Kim, & Je, 2009; Pangestuti, Bak, & Kim, 2011), antihuman immunodeficiency virus (Vo & Kim, 2010), anticoagulant (Yang et al., 2012), adipogenesis inhibitory (Cho et al., 2008), antitumor and anticancer (Cho, Park, Seo, & Yoo, 2009; Shen, Chen, Chan, Jeng, & Wang, 2009; Toshkova et al., 2010), antibacterial (Sajomsang, Gonil, & Saesoo, 2009; Xu, Xin, Li, Huang, & Zhou, 2010; Yang et al., 2010; Yang, Chou, & Li, 2005; Zhong, Li, Xing, & Liu, 2009), antihypertensive (Ngo, Qian, Je, Kim, & Kim, 2008; Qian, Eom, Ryu, & Kim, 2010), immunostimulant (Jeon & Kim, 2001), anti-Alzheimer’s (Cho, Kim, Ahn, & Je, 2011a; Yoon, Ngo, & Kim, 2009), calcium and ferrous binding (Bravo-Osuna, Millotti, Vauthier, & Ponchel, 2007; Liao, Shieh, Chang, & Chien, 2007), and hypocholesterolemic (Zhang et al., 2010; Zhou, Xia, Zhang, & Yu, 2006) properties.
By modulating and improving physiological functions, chitin, chitosan, and their derivatives may provide novel therapeutic applications for the prevention or treatment of chronic diseases. This chapter centers on chitin, chitosan, and their derivatives with antioxidant activity relevant to human health benefits.
2 Antioxidants and Oxidative Stress
Humans are impacted by many free radicals both from inside our body and surrounding environment, particularly reactive oxygen species (ROS) generated in living organisms during metabolism. It is produced in the forms of H2O2, superoxide anion (2•−) and hydroxyl (•OH) radicals. In addition, oxidative stress may cause inadvertent enzyme activation and oxidative damage to cellular systems. Free radicals attack macromolecules such as DNA, proteins, and lipids, leading to many health disorders including hypertensive, cardiovascular, inflammatory, aging, diabetes mellitus, and neurodegenerative and cancer diseases. Antioxidants may have a positive effect on human health since they can protect human body against deterioration by free radicals (Butterfield et al., 2006; Dhalla, Temsah, & Netticadan, 2000; Fubini & Hubbard, 2003; Maulik & Das, 2002; Ngo, Wijesekara, Vo, Ta, & Kim, 2011; Seven, Guzel, Aslan, & Hamuryudan, 2008).
Oxidation in foods affects lipids, proteins, and carbohydrates. However, lipid oxidation is the main cause of deterioration of food quality, leading to rancidity and shortening of shelf life. Oxidation of proteins in foods is influenced by lipid oxidation, where lipid oxidation products react with proteins causing their oxidation. Carbohydrates are also susceptible to oxidation, but they are less sensitive than lipids and proteins (Bernardini et al., 2011). Therefore, many synthetic commercial antioxidants such as butylated hydroxytoluene, butylated hydroxyanisole, tert-butylhydroquinone, and propyl gallate have been used to retard the oxidation and peroxidation processes in food and pharmaceutical industries. However, the use of these synthetic antioxidants must be under strict regulation due to potential health hazards (Blunt, Copp, Munro, Northcote, & Prinsep, 2006). Therefore, the use of natural antioxidants available in food and other biological substances has attracted significant interest due to their presumed safety and nutritional and therapeutic values (Ajila, Naidu, Bhat, & Prasada Rao, 2007).
3 Antioxidant Activity of Chitin, Chitosan, and Their Derivatives
3.1 Antioxidant activity of chitin and chitosan
Chitin oligomers (NA-COSs) are hydrolytic products of chitin using chemical, physical, or enzymatic agents and are water soluble. Therefore, NA-COSs can be used easily both in vitro and in vivo. The cellular antioxidant effects of NA-COSs (229.21–593.12 Da) produced by acidic hydrolysis of crab chitin were determined by Ngo, Kim, and Kim (2008). The inhibitory effects of NA-COSs on myeloperoxidase (MPO) activity in human myeloid cells (HL-60) and oxidation of protein and DNA in mouse macrophages (RAW 264.7) were identified. Furthermore, their direct radical scavenging effect and intracellular glutathione (GSH) level were significantly increased in a time-dependent manner. These results suggest that NA-COSs act as a potent antioxidant in live cells.
In addition, Ngo, Lee, Kim, and Kim (2009) produced two kinds of NA-COSs with different MWs. Two kinds of NA-COSs with MW of 1–3 kDa (NA-COS 1–3 kDa) and below 1 kDa (NA-COS < 1 kDa) were obtained using an ultrafiltration membrane system. They exhibited an inhibitory effect against DNA and protein oxidation. Furthermore, intracellular GSH level and direct intracellular radical scavenging effect were significantly increased in a time-dependent manner in RAW 264.7 cells. In particular, NA-COS of 1–3 kDa was more effective than NA-COS < 1 kDa in protein oxidation and production of intracellular free radicals. These results suggest that NA-COSs act as potential scavengers against oxidative stress in cells.
The antioxidant effect of chitosan was studied in vitro and in vivo (Liu, 2008). Chitosan at an addition of 0.02% had antioxidant activities in lard and crude rapeseed oil, but the activity was less than ascorbic acid. When the addition was increased, chitosan and ascorbic acid had similar activities; chitosan could significantly reduce serum free fatty acid and malondialdehyde (MDA) concentrations and increase antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), indicating that chitosan regulated the antioxidant enzymes activities and decreased lipid peroxidation. In the food industry, chitosan...
Erscheint lt. Verlag | 1.10.2014 |
---|---|
Mitarbeit |
Herausgeber (Serie): Se-Kwon Kim |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Pharmakologie / Pharmakotherapie | |
Naturwissenschaften ► Biologie ► Biochemie | |
Naturwissenschaften ► Biologie ► Limnologie / Meeresbiologie | |
Technik | |
ISBN-10 | 0-12-800365-0 / 0128003650 |
ISBN-13 | 978-0-12-800365-7 / 9780128003657 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 12,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich