Hepatobiliary Imaging, An Issue of Magnetic Resonance Imaging Clinics of North America -  Peter S. Liu

Hepatobiliary Imaging, An Issue of Magnetic Resonance Imaging Clinics of North America (eBook)

(Autor)

eBook Download: PDF | EPUB
2014 | 1. Auflage
348 Seiten
Elsevier Health Sciences (Verlag)
978-0-323-32036-8 (ISBN)
90,43 € inkl. MwSt
Systemvoraussetzungen
79,74 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This issue, edited by Drs. Peter Liu and Richard Abramson, will comprehensively review imaging of the hepatobiliary system. Articles will include: Hepatic MRI Techniques, Optimization, and Artifacts, MR Contrast Agents for Liver Imaging, Focal Liver Lesion Characterization in Noncirrhotic Patients: An MR Approach, MRI in Cirrhosis and Hepatocellular Carcinoma, Understanding LI-RADS: A Primer for Practical Use, MRI of the Liver after Locoregional and Systemic Therapy, Diffusion Weighted Imaging of the Liver: Techniques and Applications, Hepatic Iron and Fat Quantification Techniques, Perfusion Imaging in Liver MRI, MR Elastography, Treatment Planning Before Hepatobiliary Surgery: Clinical and Imaging Considerations, MRI/MRCP of Benign and Malignant Biliary Conditions, and more!
This issue, edited by Drs. Peter Liu and Richard Abramson, will comprehensively review imaging of the hepatobiliary system. Articles will include: Hepatic MRI Techniques, Optimization, and Artifacts, MR Contrast Agents for Liver Imaging, Focal Liver Lesion Characterization in Noncirrhotic Patients: An MR Approach, MRI in Cirrhosis and Hepatocellular Carcinoma, Understanding LI-RADS: A Primer for Practical Use, MRI of the Liver after Locoregional and Systemic Therapy, Diffusion Weighted Imaging of the Liver: Techniques and Applications, Hepatic Iron and Fat Quantification Techniques, Perfusion Imaging in Liver MRI, MR Elastography, Treatment Planning Before Hepatobiliary Surgery: Clinical and Imaging Considerations, MRI/MRCP of Benign and Malignant Biliary Conditions, and more!

Hepatic MR Imaging Techniques, Optimization, and Artifacts


Flavius F. Guglielmo, MDaflavius.guglielmo@jefferson.edu, Donald G. Mitchell, MDa, Christopher G. Roth, MDb and Sandeep Deshmukh, MDa,     aDepartment of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA 19107, USA; bDepartment of Radiology, Methodist Hospital, Thomas Jefferson University, 2301 South Broad Street, Philadelphia, PA 19148, USA

∗Corresponding author.

This article describes a basic 1.5-T hepatic magnetic resonance (MR) imaging protocol, strategies for optimizing pulse sequences while managing artifacts, the proper timing of postgadolinium 3-dimensional gradient echo sequences, and an effective order of performing pulse sequences with the goal of creating an efficient and high-quality hepatic MR imaging examination. The authors have implemented this general approach on General Electric, Philips, and Siemens clinical scanners.

Keywords

Hepatic MRI protocol

Hepatic MRI sequence optimization

Minimizing hepatic MRI artifacts

Extracellular space contrast agents

Hepatocyte-specific contrast agents

Postgadolinium pulse sequences

Diffusion-weighted imaging

Parallel imaging techniques

Key points


• The foundation for hepatic magnetic resonance imaging (MRI) includes T1-weighted images (including chemical shift imaging), T2-weighted images, fat suppression, and in most cases, contrast-enhanced images. Complementary techniques include balanced steady-state free precession and diffusion-weighted imaging.

• To maximize the clinical utility of hepatic MRI exams, each pulse sequence must be optimized while minimizing artifacts that interfere with interpretation.

• An understanding of the different types of gadolinium-based contrast agents (GBCAs) and the most important characteristics of each agent is needed to improve the diagnostic yield of the hepatic MRI exam.

• T1-weighted fat-suppressed gradient echo (GRE) sequences must be properly timed to account for the type of GBCA used while adjusting imaging parameters to maximize image quality.

• Most pulse sequences can be effectively performed after administering gadolinium. Exceptions include dual GRE sequences, single-shot fast-spin echo heavily T2-weighted sequences, high-resolution 3-dimensional MR cholangiopancreatography sequences obtained after gadoxetate disodium administration, and short TI inversion recovery sequences obtained after administration of extracellular space contrast agents.

Introduction


Compared with other hepatic imaging modalities including ultrasonography, contrast-enhanced ultrasonography, computed tomography (CT), and positron emission tomography-CT, magnetic resonance imaging (MRI) offers more comprehensive evaluation of the liver, establishing in many cases an accurate tissue diagnosis. To fully harness the power of MRI, the techniques must be optimized while minimizing artifacts interfering with interpretation. The foundation for hepatic MRI includes T1-weighted images (including chemical shift imaging), T2-weighted images, fat suppression, and in most cases, contrast-enhanced images. Complementary imaging sequences include balanced steady state free precession (BSSFP) and diffusion weighted imaging (DWI). Pregadolinium and postgadolinium fat-suppressed T1-weighted 3D gradient echo (GRE) sequences are generally the workhorse of the examination and must be properly timed to account for the type of gadolinium based contrast agent (GBCA) while adjusting imaging parameters to maximize image quality. Finally, certain pulse sequences can be performed after gadolinium administration to improve examination efficiency while maximizing the diversity of pulse sequences.

This article describes a basic 1.5-T hepatic MRI protocol, strategies for optimizing pulse sequences while managing artifacts, the proper timing of postgadolinium 3D GRE sequences, and an effective order of performing pulse sequences with the goal of creating an efficient and high-quality hepatic MRI examination. The authors have implemented this general approach on Philips (Philips Medical Systems, Best, Netherlands), Siemens (Siemens Medical Solutions, Erlangen, Germany) and General Electric (GE Medical Systems, Milwaukee, Wisconsin, USA) clinical scanners.

The basic hepatic MR imaging examination


In clinical practice, the typical hepatic MR imaging examination (Table 1) includes comprehensive imaging of other abdominal viscera, although generally, the MR imaging protocol is optimized for evaluation of the liver. For gadolinium-enhanced studies, intravenous gadolinium should be administered as early as possible during the examination. Then, if the examination is prematurely terminated for any reason, gadolinium-enhanced images, which are often the most important sequences for lesion characterization, will have already been completed. This protocol is achievable because most sequences, except dual GRE (in and out of phase) sequences, single shot fast spin echo (SSFSE) heavily T2-weighted sequences, high-resolution 3D MR cholangiopancreatography (MRCP) sequences obtained after gadoxetate disodium administration, and short TI inversion recovery (STIR) sequences obtained after administration of extracellular space contrast agents (ECSAs), are not adversely affected by gadolinium and can be performed after gadolinium administration. A torso phased array coil should be used for all sequences, including localizer images.

Table 1

Hepatic MR imaging pulse sequences and parameters (1.5 T)

Protocol when using an extracellular space agent (ECSA):
SSFSE survey 3 plane 48 320 × 192 0 8/0 Min 80 90 No
SSFSE (Heavily T2WI) Coronal 44 256 × 192 1.7 5/0 Min 180 90 No
SSFSE (heavily T2WI) Axial 38 256 × 192 2 5/0 Min 180 90 No
Dual GRE in and out of phase Axial 38 256 × 192 2 7/0.5 265 2.1/4.4 90 No
T1-weighted 3D spoiled GRE (pre-contrast double arterial, & portal venous phase) Axial 42 320 × 224 1.8 4.4/2.2 Min Min 12 Yes
Moderately T2W FS Axial 40 256 × 192 2 7.5/0.5 2300 84 90 Yes
T1-weighted 3D spoiled GRE (delayed phasea) Axial 42 320 × 224 1.8 4.4/2.2 Min Min 15 Yes
BSSFP Axial 38 192 × 288 2 5/0 Min Min 70 Yes
Radial Slab 2D MRCPb Coronal 26 288 × 256 0 40/0 2666 1096 90 Yes
Diffusion Axial 36 128 × 160 2 6/1 7000 73 90 Yes
3D MRCPc Coronal 38 320 × 320 2 1.4/0.7 3750 847 90 Yes
Additional postgadolinium pulse sequences and parameters when using gadoxetate disodium instead of an ECSA:
T1-weighted 3D spoiled GRE (hepatobiliary phase) Axial 40 288 × 160 1.8 5/2.5 Min Min 25–30d Yes
T1-weighted 3D spoiled GRE (hepatobiliary phase) Coronal 42 288 × 160 0 5/2.5 Min Min 25–30d Yes

Abbreviations: BH, breath-hold; FOV, field of view; FS, fat suppression; Min, minimum; PAF, parallel imaging acquisition factor; T2W, T2 weighted; T2WI, T2-wieghted imaging; TE, echo time; TR, repetition time; 2D, 2-dimensional.

aDelayed phase is called late dynamic phase when using gadoxetate disodium.

bRadial slab 2D MRCP can be performed if it is completed within 5 minutes of gadoxetate disodium injection.

c3D MRCP should be performed before gadoxetate disodium...

Erscheint lt. Verlag 28.8.2014
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
ISBN-10 0-323-32036-8 / 0323320368
ISBN-13 978-0-323-32036-8 / 9780323320368
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 34,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich