'I would strongly recommend this book to any radiologist or radiographer with an interest in abdomino-pelvic MRI. It will become a recommended text on the reading list of my Medical Magnetic Resonance Maters Programme.' Reviewed by: Paul Bland, Senior Lecture and Postgraduate Diagnostic Radiography Programme Director, City University London, Nov 2014
The Consulting Editor of Radiologic Clinics, Frank Miller, presents a comprehensive review of Adult Body MR. Articles will include: body MRI: fast, efficient, and comprehensive; dealing with vascular conundrums with MRI; HCC and other hepatic malignancies: MR imaging; understanding the canvas: diagnosis and problem-solving in diffuse liver disease; gallbladder and biliary (MRCP); MR of kidney and adrenal glands; prostate MR; MR of focal liver masses; MR of pancreas; MR enterography; gadolinium contrast agent selection and optimal use for body MRI; MR angiography and venography of abdomen and pelvis; functional MR imaging; and much more! "e;I would strongly recommend this book to any radiologist or radiographer with an interest in abdomino-pelvic MRI. It will become a recommended text on the reading list of my Medical Magnetic Resonance Maters Programme."e; Reviewed by: Paul Bland, Senior Lecture and Postgraduate Diagnostic Radiography Programme Director, City University London, Nov 2014
Front Cover 1
Adult Body MR 2
copyright
3
Contributors 4
Contents 6
Radiologic Clinics Of North America
11
Preface 12
Body MR Imaging 14
Key points 14
Introduction 14
Cooperative protocol 14
T1-Weighted Sequences 15
In-phase two-dimensional spoiled gradient echo sequence 15
Out-of-phase two-dimensional spoiled gradient echo sequence 15
Coronal two-dimensional spoiled gradient echo sequence 16
Fat-suppressed T1-weighted three-dimensional gradient recalled echo sequence 16
T2-weighted Sequences 17
Single-shot echo-train spin-echo sequence 17
Contrast-enhanced Fat-suppressed T1-weighted 3D GRE Sequence 19
Hepatic arterial dominant phase 19
Early hepatic venous phase 19
Interstitial phase 19
Motion-resistant protocols 20
T1-weighted Sequences 22
Two-dimensional MP-RAGE sequence 22
Two-dimensional WE-MP-RAGE 22
3D radial GRE sequence 24
T2-weighted Sequences 26
SS-ETSE sequence 26
High-resolution images 26
Parallel MR Imaging 26
3.0-T MR Imaging 26
Summary 26
References 26
Gadolinium Contrast Agent Selection and Optimal Use for Body MR Imaging 28
Key points 28
Introduction 28
Gadolinium general information 28
Gadolinium Mechanism of Action 28
Gadolinium-based contrast agents 29
Extracellular Space Agents (ECSAs) 29
Available agents 29
Mechanism of action 30
ECSA indications 30
ECSA indications for which gadobenate dimeglumine (ie, a high-relaxivity agent) is preferred 30
Hepatocyte-Specific Contrast Agents (HSCAs) 30
Available agents 30
Mechanism of action 31
Approved HSCA indications 31
Off-label HSCA indications 31
Gadoxetate disodium caveats and limitations 31
Blood Pool Agents (BPAs) 36
Available agents 36
Mechanism of action 36
BPA indications approved by the US Food and Drug Administration 37
Off-label BPA indications 38
Timing of postgadolinium contrast 3D gradient-echo sequences 38
Baseline Precontrast Images 38
Optimal Timing for 3D GRE Sequences Performed with ECSAs 38
Arterial phase 38
Blood pool phase 38
Extracellular phase 38
Optimal Timing for 3D GRE Sequences Performed with Gadoxetate Disodium 38
Arterial and blood pool phase 38
Late dynamic phase 38
Hepatobiliary phase 38
3D GRE Sequences Specific for BPAs 38
Equilibrium (steady state) phase 38
Gadolinium chelate structure and stability 39
Gadolinium dosage 40
Gadolinium dose, concentration, and injection volume 40
Pulse sequences relative to the timing of intravenous gadolinium administration 40
Pulse Sequences that May Have Improved Diagnostic Quality After Intravenous Gadolinium 41
Pulse Sequences that Can Be Performed Either Before or After Administering Gadolinium 42
Pulse Sequences that Should Not Be Performed After Administering Gadolinium 42
High-relaxivity contrast agents 43
When to use gadoxetate disodium after hepatocellular carcinoma (or other neoplasm) is treated with chemoembolization or rad ... 43
What is the optimal flip angle for each GBCA? 44
Soft Tissue Evaluation Flip Angle 44
MR Angiography Flip Angle 44
Gadoxetate Disodium (Hepatobiliary Phase) Flip Angle 44
Gadofosveset Trisodium (Steady State/Equilibrium Phase) Flip Angle 45
Allergic reactions to GBCAs 45
General 45
Precautionary Measures that Can Be Taken in a Patient with Risk Factors for Allergic-Type Reactions 45
Strategies for adjusting body MR imaging protocols for patients with reduced estimated glomerular filtration rates 45
Liver MR Imaging 45
Renal MR Angiography 45
Summary 46
References 46
MR Imaging of Benign Focal Liver Lesions 48
Key points 48
Introduction 48
MR imaging technique 48
Protocol 48
Contrast Agents 49
Diffusion-Weighted Imaging 49
Focal liver lesions 50
Hemangioma 50
Focal Nodular Hyperplasia 52
Hepatocellular Adenoma 57
Pyogenic liver abscess 59
Hepatic cysts 63
Ciliated hepatic foregut cyst 64
Bile duct hamartomas 65
Biliary cystadenoma 67
Summary 69
References 69
Hepatocellular Carcinoma and Other Hepatic Malignancies 74
Key points 74
Introduction 74
Normal anatomy and imaging technique 75
Imaging findings and pathology 76
Primary Lesions 76
Hepatocellular carcinoma 76
Fibrolamellar carcinoma 81
Intrahepatic cholangiocarcinoma 82
Biliary cystadenocarcinoma 83
Hepatoblastoma 87
Epithelioid hemangioendothelioma 88
Sarcomas 88
Lymphoma 90
Metastases 91
Summary 94
References 95
MR Imaging of Diffuse Liver Disease 100
Key points 100
Introduction 100
Techniques 100
Iron Quantification 100
Signal intensity ratio 101
Relaxometry 101
Fat Quantification 102
Fat and Iron Quantification 102
Elastography 103
Fibrosis and cirrhosis 104
Metabolic/storage diseases 106
Hepatosteatosis 106
Iron Overload 107
Wilson Disease 107
Glycogen and Lipid Storage Diseases 109
Infectious and inflammatory/granulomatous 109
Amyloidosis 109
Sarcoidosis 111
Vascular 111
Budd-Chiari Syndrome 111
Passive Hepatic Congestion 113
Sinusoidal Obstruction Syndrome 113
Discussion 113
References 114
MR Imaging of the Biliary System 116
Key points 116
Introduction 116
MR technique 116
Hepatobiliary-specific contrast agents 117
Pitfalls and artifacts 117
Normal and variant biliary anatomy 118
Congenital biliary lesions 120
Bile 123
Cholelithiasis 123
Cholecystitis 127
Adenomyomatosis 128
Gallbladder carcinoma 129
Infectious cholangitis 131
Stricture 133
Primary sclerosing cholangitis 134
Primary biliary cirrhosis 137
Cholangiocarcinoma 137
Biliary cystadenoma and cystadenocarcinoma 139
Postsurgical evaluation 140
Summary 142
References 142
MR Imaging of the Pancreas 148
Key points 148
Introduction 148
Technique 148
Normal MR Appearance of the Pancreas 148
Pancreatitis 150
Acute Pancreatitis 150
Chronic Pancreatitis 152
Groove Pancreatitis 154
Autoimmune Pancreatitis 155
Anatomic variants 156
Pancreas Divisum 156
Annular Pancreas 156
Pancreatic neoplasms 157
Adenocarcinoma 157
Pancreatic Endocrine Tumors 159
Mucinous Cystic Neoplasms 160
Serous Cystadenomas 160
Intraductal Papillary Mucinous Neoplasms 161
Solid Pseudopapillary Tumor 163
Pancreatic Lymphoma 164
Pancreatic Metastases 165
Summary 166
References 166
MR Imaging of the Kidneys and Adrenal Glands 170
Key points 170
Introduction 170
MR imaging technique 170
Kidneys 171
Cystic Renal Lesions 172
Solid Renal Lesions 173
RCC 173
Angiomyolipoma 175
Oncocytoma 177
Infiltrative Renal Masses 177
Lymphoma 177
Metastases 178
Renal Mass Mimickers 178
Pyelonephritis 178
Vascular causes 178
Excretory system 179
Urothelial Neoplasms 179
Adrenal glands 180
Adrenal Adenoma 180
Myelolipoma 182
ACC 183
Pheochromocytoma 184
Metastases 185
Adrenal Cysts, Pseudocysts 185
Adrenal Hematoma 187
Summary 187
References 187
MR Enterography for Assessment and Management of Small Bowel Crohn Disease 190
Key points 190
Introduction 190
Imaging protocols 191
Normal anatomy and MR imaging appearance of small bowel 192
Imaging findings/pathology 193
Active Inflammation 194
Penetrating Disease 194
Fibrostenosing Disease 195
Crohn Colitis 196
Other Findings 196
Utility of MRE 196
MRE Versus CTE 197
Pitfalls 198
Summary 199
References 199
MR Imaging of the Prostate 202
Key points 202
Introduction 202
Treatment 203
Anatomy 203
Imaging protocol 204
Preparation 204
Choice of the Scanner and Coils 204
Multiparametric Sequences 204
T2-weighted Imaging Technique 204
DWI Technique 206
DCE-MR Imaging Technique 206
MR Spectroscopic Imaging 208
T1-weighted Imaging Technique 210
Interpretation of prostate MR imaging 210
Peripheral Zone Cancer 211
Evaluation for Extracapsular Extension and Neurovascular Bundle Invasion 213
Evaluation of Seminal Vesicle Invasion 213
CG Cancer 215
Quantitative Approach and Computer-aided Diagnosis 216
Clinical indications 217
Staging 217
Detection 217
Localization 218
Assessing Aggressiveness 219
Role of MR imaging in Active Surveillance 219
Image-guided Interventions 220
Posttreatment Evaluation 221
Summary 222
References 222
MR Angiography of the Abdomen and Pelvis 230
Key points 230
Introduction 230
MR angiographic techniques 231
Contrast-Enhanced MR Angiography 231
Noncontrast Techniques for Abdomen and Pelvis 232
Field-Strength Considerations 234
Contrast Agents 234
Clinical applications: arterial imaging 235
Renal Artery Stenosis 235
Mesenteric Artery Stenosis and Flow-Related Aneurysms 236
Median arcuate ligament syndrome 236
Flow-related aneurysms 237
Leriche Syndrome 239
Iliac Artery Aneurysms 239
Vasculitis 240
Clinical applications: venous imaging 240
Congenital Variants of the Inferior Vena Cava and Renal Veins 240
May-Thurner Syndrome 241
Clinical applications: vascular complications of transplantation 242
Pancreas Transplant Complications 242
Kidney Transplant Complications 244
Liver Transplant Complications 247
Summary 249
References 249
Dealing with Vascular Conundrums with MR Imaging 252
Key points 252
Introduction 252
Imaging techniques 253
Non–Contrast-Enhanced MR Angiography 253
Contrast-Enhanced MR Angiography and Postprocessing Techniques 253
Contrast-Enhanced Fat-Suppressed T1-Weighted Three-Dimensional–GE Sequences 255
Motion-Resistant Protocol in Noncooperative Patients 255
Abdominal vascular imaging 256
Problem Solving 256
Flow artifact versus thrombosis 256
Bland thrombosis versus tumor thrombosis 256
Vessel versus mass 258
Type of vessel 258
Clinical Considerations 258
Abdominal aortic aneurysm 258
Aortic dissection 261
Visceral artery aneurysm 261
Mesenteric arterial ischemia 261
Portal venous thrombosis 263
Budd-Chiari syndrome 264
Hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome) 265
IVC disease 266
Pelvic vascular imaging 268
Clinical Considerations 268
Pelvic veins 268
Thoracic vascular imaging 269
Clinical Considerations 271
Thoracic aorta 271
Pulmonary arteries and pulmonary thromboembolic disease 271
Summary 272
References 272
Functional MR Imaging of the Abdomen 274
Key points 274
Introduction 274
DWI 274
Basic Concepts 275
Optimizing Technique 275
Apparent Diffusion Coefficient 276
Qualitative and Quantitative Analysis of DWI 277
IVIM 277
Diffusion Tensor Imaging 277
Applications of DWI 277
Diffuse liver disease 278
Focal liver masses 278
Liver tumor response assessment 279
Pancreatic disease 280
Bowel disease 281
Renal disease 281
Prostate cancer 282
Summary of DWI 283
MR perfusion 283
DCE MR Imaging Technique 284
Challenges in DCE MR Imaging 284
Uses of DCE MR Imaging 284
MR elastography 284
Applications of MR Elastography 285
Summary 287
References 287
Index 296
Gadolinium Contrast Agent Selection and Optimal Use for Body MR Imaging
Flavius F. Guglielmo, MDa∗flavius.guglielmo@jefferson.edu, Donald G. Mitchell, MDa and Shiva Gupta, MDb, aDepartment of Radiology, Thomas Jefferson University Hospital, 132 South 10th Street, Philadelphia, PA 19107, USA; bDepartment of Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, FCT15.5013, Houston, TX 77030, USA
∗Corresponding author.
Proper selection of a gadolinium-based contrast agent (GBCA) for body magnetic resonance imaging (MRI) cases requires understanding the indication for the MRI exam, the key features of the different GBCAs, and the effect that the GBCA has on the selected imaging protocol. The different categories of GBCAs require timing optimization on postcontrast sequences and adjusting imaging parameters to obtain the highest T1 contrast. Gadoxetate disodium has many advantages when evaluating liver lesions, although there are caveats and limitations that need to be understood. Gadobenate dimeglumine, a high-relaxivity GBCA, can be used for indications when stronger T1 relaxivity is needed.
Keywords
Gadolinium-based contrast agents
Extracellular space agents
Hepatocyte-specific contrast agents
Blood pool agents
Postgadolinium pulse sequences
Gadolinium chelate structure and stability
Key points
• Proper selection of a gadolinium-based contrast agent requires understanding the indication for the magnetic resonance (MR) imaging examination, the key features of the different types of commercially available contrast agents, and the effect that the contrast agent has on the selected imaging protocol.
• The timing is different for each category of gadolinium contrast, and therefore, protocols must be created that optimize the timing based on the type of gadolinium contrast agent administered.
• Gadoxetate disodium has many advantages when evaluating liver lesions. However, there are important caveats and limitations that need to be understood before selecting this agent.
• A high-relaxivity contrast agent such as gadobenate dimeglumine can be used when stronger T1 relaxivity is needed, such as for MR angiography, MR enterography, MR venography, pelvis fistula MR imaging, and combined abdomen and pelvis MR imaging. Gadobenate dimeglumine, at reduced dose, is also ideal for MR urography, because of the high relaxivity in plasma versus urine.
Introduction
Choosing the optimal gadolinium contrast agent for body magnetic resonance (MR) imaging cases requires the following:
1. Knowing the patient's clinical information to determine the appropriate examination indication and whether intravenous gadolinium administration is needed
2. Knowing the relevant properties of the chosen gadolinium contrast agent
3. Understanding the effect that intravenous gadolinium has on body MR imaging pulse sequences
This article describes how to combine these factors when choosing an intravenous gadolinium contrast agent to perform efficient and high-quality body MR imaging examinations.
Gadolinium general information
Gadolinium Mechanism of Action
Gadolinium is highly paramagnetic because of its 7 unpaired electrons.1 Although the iodine molecule directly increases computed tomography (CT) attenuation, the effect of the gadolinium molecule is indirect. This leads to an amplification effect, because one gadolinium atom can facilitate relaxation of many adjacent water molecules. Gadolinium acts by shortening T1, T2, and T2* relaxation times of adjacent water protons.1–4 This relaxation primarily causes increased signal intensity (enhancement) on T1-weighted images (Fig. 1). However, T2 shortening can predominate and cause decreased signal intensity on T2-weighted images (Fig. 2) and, in high gadolinium concentrations, can cause decreased signal intensity on T1-weighted images, as a result of dominant T2 shortening if the echo time (TE) is high enough (Fig. 3). Examples in which particularly high gadolinium concentration can be found include urine or first-pass venous injection into the superior vena cava. In short tau inversion recovery (STIR) sequences, the T1 shortening from gadolinium results in a loss of signal intensity (Fig. 4).1,4
Fig. 1 Axial pregadolinium (A), arterial phase (B), portal venous phase (C), and delayed phase (D) fat-suppressed 3D gradient-echo (GRE) images showing an enhancing right-lobe liver lesion with discontinuous nodular peripheral and progressive centripetal enhancement consistent with a hemangioma (arrows) (A–C: repetition time [TR] = 4, echo time [TE] = 1.8, flip angle [FA] 12) (D: TR = 3.5, TE = 1.7, FA 15).
Fig. 2 Axial pregadolinium (A) and postgadolinium (B) heavily T2-weighted images. Shortened T2 relaxivity primarily causes decreased signal intensity in the renal collecting systems (arrows). There is little or no change in other tissues (repetition time 760, echo time 178).
Fig. 3 Coronal (A) pregadolinium and (B) postgadolinium T1-weighted images on 0.7-T MR imaging (repetition time 248, echo time 8, flip angle 70). The high gadolinium concentration in the proximal ureters leads to decreased signal intensity on T1-weighted images (arrows).
Fig. 4 Axial pregadolinium (A, B) and postgadolinium (C, D) STIR images obtained after the intravenous administration of gadoxetate disodium. In STIR sequences, the T1 shortening property of gadolinium results in a loss of signal intensity. Note the darkening of the liver (arrow in C, D) and renal collecting systems (arrowheads in D) on postcontrast images (repetition time 880, echo time 67, inversion time 80).
Gadolinium-based contrast agents
There are currently 9 different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body MR imaging cases. The decision about which agent to use can be simplified by first considering which category of GBCA is needed for the examination indication. The 3 categories include extracellular space agents, hepatocyte-specific contrast agents, and blood pool agents.1,2,5 After selecting the proper category for the indicated body MR imaging examination, it is important to understand some of the characteristics of each of the agents. Although each agent has many differentiating characteristics the key features for selecting the optimal GBCA are highlighted in Table 1.4,6–12
Table 1
Characteristics of gadolinium-based contrast agents needed for protocoling body MR imaging cases
ECSA | Gadoterate meglumine | Dotarem | Cyclic | Ionic | 3.4–3.8 | 0 | 0.5 | 0.1 |
Gadobutrol | Gadavist/Gadovist | Cyclic | Nonionic | 4.9–5.5 | 0 | 1 | 0.1 |
Gadopentetate dimeglumine | Magnevist | Linear | Ionic | 3.9–4.3 | 0 | 0.5 | 0.1 |
Gadodiamide | Omniscan | Linear | Nonionic | 4–4.6 | 0 | 0.5 | 0.1 |
Gadoversetamide | Optimark | Linear | Nonionic | 4.4–5 | 0 | 0.5 | 0.1 |
Gadoteridol | ProHance | Cyclic | Nonionic | 3.9–4.3 | 0 | 0.5 | 0.1 |
HSCA | Gadoxetate disodium | Eovist/Primovist | Linear | Ionic | 6.5–7.3 | 50 | 0.25 | 0.025 |
Gadobenate dimeglumine | MultiHance | Linear | Ionic | 6–6.6 | 4–5 | 0.5 | 0.1 |
BPA | Gadofosveset trisodium | Ablavar/Vasovist | Linear | Ionic | 18–20 | 5 | 0.25 | 0.03 |
Abbreviation: BPA, blood pool agents; ECSA, extracellular space agents; HSCA, hepatocyte-specific contrast agents; mmol/kg, millimoles per kilogram; mmol/mL, millimoles per milliliter; T, tesla.
Extracellular Space Agents (ECSAs)
Available...
Erscheint lt. Verlag | 8.9.2014 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Medizin / Pharmazie ► Gesundheitsfachberufe | |
Medizinische Fachgebiete ► Radiologie / Bildgebende Verfahren ► Kernspintomographie (MRT) | |
Medizinische Fachgebiete ► Radiologie / Bildgebende Verfahren ► Radiologie | |
Studium ► 2. Studienabschnitt (Klinik) ► Anamnese / Körperliche Untersuchung | |
ISBN-10 | 0-323-31190-3 / 0323311903 |
ISBN-13 | 978-0-323-31190-8 / 9780323311908 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 170,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich