Cellular and Molecular Biology of Bone -

Cellular and Molecular Biology of Bone (eBook)

Masaki Noda (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
567 Seiten
Elsevier Science (Verlag)
978-0-08-092500-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
200,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Written by well-known experts in their respective fields, this book synthesizes recent work on the biology of bone cells at the molecular level. Cellular and Molecular Biology of Bone covers the differentiation of these cells, the regulation of their growth and metabolism, and their death resorption. The authors' special comprehensive treatment of the cellular and molecular mechanisms of bone metabolism makes this book a unique and valuable tool. Cellular and Molecular Biology of Bone provides interested readers-with concise state-of-the-art reviews in bone biology that will enlarge their scope and increase their appreciation of the field. Research in this area has intensified recently due to the increasing incidence of osteoporosis. The editor hopes an understanding of the basic biology of this disease will prove relevant to its prevention and treatment.
Written by well-known experts in their respective fields, this book synthesizes recent work on the biology of bone cells at the molecular level. Cellular and Molecular Biology of Bone covers the differentiation of these cells, the regulation of their growth and metabolism, and their death resorption. The authors' special comprehensive treatment of the cellular and molecular mechanisms of bone metabolism makes this book a unique and valuable tool. Cellular and Molecular Biology of Bone provides interested readers-with concise state-of-the-art reviews in bone biology that will enlarge their scope and increase their appreciation of the field. Research in this area has intensified recently due to the increasing incidence of osteoporosis. The editor hopes an understanding of the basic biology of this disease will prove relevant to its prevention and treatment.

Front Cover 1
Cellular and Molecular Biology of Bone 4
Copyright Page 5
Table of Contents 6
Contributors 18
Preface 22
CHAPTER 1. OSTEOBLASTIC CELL LINEAGE 24
I. Introduction 25
II. Cells of the Osteoblast Lineage 25
III. Origin and Lineage of the Osteoblast 33
IV. Osteoblast Heterogeneity: Subpopulations, Stages of Differentiation, or Aberrant Expression in Vitro? 39
V. Indirect Identification of the Osteoprogenitor Cell 42
VI. Monoclonal Antibodies for Identification of Cells 
48 
VII. Concluding Remarks 51
References 52
CHAPTER 2. MOLECULAR MECHANISMS MEDIATING DEVELOPMENTAL AND HORMONE-REGULATED EXPRESSION OF GENES IN OSTEOBLASTS: 
70 
I. Introduction 71
II. The Osteoblast Developmental Sequence: A 
72 
III. Hormone Modifications on Development of the Osteoblast Phenotype 82
IV. Molecular Mechanisms Operative in Developmental Expression of a Cell Growth and Bone-Specific Gene during Osteoblast Differentiation 87
V. Consequence of the Abrogation of Growth Controlon Deregulation of Differentiation Genes in Tumor Growth Cells 103
References 108
CHAPTER 3. CELLULAR AND MOLECULAR BIOLOGY OF TRANSFORMING GROWTH FACTOR 
120 
I. Introduction 121
II. Chemistry of Transforming Growth Factor 
121 
III. Multiple Actions of Transforming Growth Factor 
123 
IV. Transforming Growth Factor 
126 
V. Transcriptional Control of Expression of Transforming Growth Factor 
131 
VI. Characterization of the Promoters for Transforming Growth Factors ß1, ß2, and 
135 
VII. Post-transcriptional Regulation of Transforming Growth Factor 
143 
VIII. Conclusion 144
References 145
CHAPTER 4. BONE MORPHOGENETIC PROTEINS AND THEIR GENE EXPRESSION 154
I. Introduction 155
II. Bone Morphogenetic Protein Family 155
III. In Vivo Activities 164
IV. Mechanisms of Action 171
References 180
CHAPTER 5. OUR UNDERSTANDING OF INHERITED SKELETAL FRAGILITY AND WHAT THIS HAS TAUGHT US ABOUT BONE STRUCTURE AND FUNCTION 192
I. Introduction 193
II. Mapping the Osteogenesis Imperfecta Locus 193
III. Clinical Classification 194
IV. Evidence of Genetic and Biochemical Heterogeneity 195
V. Characterization of the First Molecular Defect in a Collagen Gene 196
VI. Mapping Single Amino Acid Substitutions: The Predominant Structural Mutation Associated with Osteogenesis Imperfecta Types II-IV 198
VII. Inheritance 202
VIII. Summary 209
References 209
CHAPTER 6. MOLECULAR AND CELLULAR BIOLOGY OF THE MAJOR NONCOLLAGENOUS PROTEINS IN BONE 214
I. Introduction 215
II. Osteonectin/SPARC/BM-40 216
III. Osteopontin and Bone Sialoprotein 228
IV. Biglycan and Decorin 237
V. Conclusion 244
References 245
CHAPTER 7. THE OSTEOCALCIN GENE AS A MOLECULAR MODEL FOR TISSUE-SPECIFIC EXPRESSION AND 1,25-DIHYDROXYVITAMIN 
258 
I. Introduction 259
II. Osteocalcin Gene Transcription Unit 259
III. Functional Activity of the Osteocalcin Promoter 260
IV Steroid Receptor Superfamily 266
V Role of the Vitamin D Receptor in Osteocalcin Gene Activation 268
VI. Properties of Nuclear Accessory Factor and Other Steroid Receptor Accessory Factors 272
VII. Summary 274
References 275
CHAPTER 8. MOLECULAR MECHANISMS OF ESTROGEN AND THYROID HORMONE ACTION 280
I. Overview of Estrogen and Thyroid Hormone Action 281
II. Characterization of Estrogen- and Thyroid Hormone-Responsive Genes 283
III. Identification and Characterization of Hormone Response Elements 284
IV. Estrogen and Thyroid Hormone Receptor Genes 290
V. DNA-Binding Properties of the Estrogen Receptor 294
VI. DNA-Binding Properties of the Thyroid Hormone Receptor 296
VII. Mechanisms Responsible for Transcriptional Activation by Estrogen and Thyroid Hormone Receptors 298
VIII. Implications for the Study of the Mechanisms of Action of Estrogen and Thyroid Hormones on Bone Development and Homeostasis 300
References 301
CHAPTER 9. RECENT ADVANCES IN THE BIOLOGY OF RETINOIDS 310
I. Introduction 311
II. Retinoid Receptors 314
III. New Retinoids 319
IV. Retinoids in Development 322
V. Conclusion 336
References 336
CHAPTER 10. PARATHYROID HORMONE BIOSYNTHESIS AND ACTION: Molecular Analysis of the Parathyroid Hormone Gene and Parathyroid Hormone/Parathyroid Hormone-Related Peptide Receptor 344
I. Introduction 345
II. Parathyroid Hormone Gene Structure 345
III. Regulation of Parathyroid Hormone Gene Expression 346
IV. Parathyroid Hormone /Parathyroid Hormone-Related Peptide Receptor 351
References 359
CHAPTER 11. MOLECULAR MECHANISMS OF CALCITONIN GENE TRANSCRIPTION AND POST-TRANSCRIPTIONAL RNA PROCESSING 366
I. Introduction 367
II. The Cellular Distribution of Calcitonin and Calcitonin Gene-Related Peptide 367
III. Transcriptional Regulation of the Calcitonin Gene 369
IV. Post-transcriptional Processing of the Calcitonin Gene Primary Transcript 383
References 393
CHAPTER 12. CYTOKINES IN BONE: Local Translators in Cell-to-Cell Communications 398
I. Introduction 399
II. Osteotropic Cytokines and Growth Factors in Bone 399
III. Cellular Components in Bone Microenvironment 400
IV. Mediation of Cell-to-Cell Communication by Osteotropic Cytokines 402
V. Actions of Cytokines and Growth Factors on Bone 405
VI. Conclusion 423
References 424
CHAPTER 13. SIGNAL TRANSDUCTION IN OSTEOBLASTS AND OSTEOCLASTS 436
I. Introduction 437
II. Substances with Effects in Bone Cells 438
III. Mechanisms of Signal Generation 441
IV. Specific Examples of Signal Transduction in Osteoblasts: Parathyroid Hormone/Parathyroid Hormone-Related Peptides 451
V. Specific Examples of Signal Transduction in Osteoclasts 455
References 461
CHAPTER 14. CELLULAR AND MOLECULAR BIOLOGY OF THE OSTEOCLAST 468
I. Introduction 469
II. Motility, Attachment, and Establishment of the Bone Resorbing Compartment 474
III. Proteins Destined for Export: Biosynthetic and Secretory Functions of the Osteoclast 482
IV. Cytosolic and Membrane Proteins: Membrane Composition and Ion Transport 489
V Regulation of the Mature Osteoclast 501
VI. Origin and Differentiation of the Osteoclast 503
VII. A New Challenge: The Protooncogene c-src Is Required for Normal Osteoclast Function 504
VIII. Summary and Conclusion 507
References 507
CHAPTER 15. c-fos ONCOGENE EXPRESSION IN CARTILAGE AND BONE TISSUES OF TRANSGENIC AND CHIMERIC MICE 520
I. Introduction 521
II. The fos Oncogene 526
III. Overexpression of c-fos Leads to Skeletal Defects in Transgenic and Chimeric Mice 532
IV. Specificity of c-fos Action 546
V. Conclusions and Perspectives 551
References 554
CHAPTER 16. MOLECULAR BIOLOGY OF CARTILAGE MATRIX 562
I. Introduction 563
II. Collagen Type II 564
III. Aggrecan 568
IV. Link Protein 573
V. Summary 574
References 575
Index 580

CONTRIBUTORS


Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Abdul-Badi Abou- Samra,     (321), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Jane E. Aubin,     (1), Medical Research Council Group in Periodontal Physiology, University of Toronto, Toronto, Ontario M5S 1A8

R. Tracy Ballock,     (97), Laboratory of Chemoprevention, National Institute of Health, National Cancer Institute, Bethesda, Maryland 20892

Roland Baron,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Jeffrey Bonadio,     (169), Department of Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109

Myles A. Brown,     (257), Departments of Medicine, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115

Munmun Chakraborty,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Diptendu Chatterjee,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Gilbert J. Cote,     (343), Departments of Medicine and Cell Biology, Baylor College of Medicine and VA Medical Center and Section of Endocrinology, M.D. Anderson Cancer Center, University of Texas, Houston, Texas 77030

Marie Demay,     (321), Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114

Randall L. Duncan,     (413), Renal Division, Jewish Hospital/Washington University, St. Louis, Missouri 63110

Gregor Eichele,     (287), V. and M. McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030

Robert F. Gagel,     (343), Departments of Medicine and Cell Biology, Baylor College of Medicine and VA Medical Center and Section of Endocrinology, M.D. Anderson Cancer Center, University of Texas, Houston, Texas 77030

Christopher K. Glass,     (257), Division of Cellular and Molecular Medicine and, Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093

Steven A. Goldstein,     (169), Orthopedic Research Laboratories, Section of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan 48109

Agamemnon E. Grigoriadis,     (497), Research Institute of Molecular Pathology, A-1030, Vienna, Austria

Anne-Marie Heegaard,     (191), Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Johan N.M. Heersche,     (1), Medical Research Council Group in Periodontal Physiology, University of Toronto, Toronto, Ontario M5S 1A8

William Home,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Keith A. Hruska,     (413), Renal Division, Jewish Hospital of St. Louis, St. Louis, Missouri 63110

Kyomi Ibaraki,     (191), Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Harald Jüppner,     (321), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Sandra A. Kerner,     (235), Departments of Pediatrics and Cell Biology, Baylor College of Medicine, Houston, Texas 77030 and Ligand Pharmaceuticals, Inc., San Diego, California 92121

Janet M. Kerr,     (191), Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Robert A. Kesterson,     (235), Departments of Pediatrics and Cell Biology, Baylor College of Medicine, Houston, Texas 77030 and Ligand Pharmaceuticals, Inc., San Diego, California 92121

Seong-Jin Kim,     (97), Laboratory of Chemoprevention, National Institutes of Health, National Cancer Institute, Bethesda, Maryland 20892

Henry Kronenberg,     (321), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Jane B. Lian,     (47), Department of Cell Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655

Sergio Line1,     (539), National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Abderrahim Lomri,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Meetha Medhora,     (413), Renal Division, Jewish Hospital/Washington University, St. Louis, Missouri 63110

Lynn Neff,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Keiichi Ozono,     (235), Departments of Pediatrics and Cell Biology, Baylor College of Medicine, Houston, Texas 77030 and Ligand Pharmaceuticals, Inc., San Diego, California 92121

Sara Peleg,     (343), Department of Medical Specialities, Section of Endocrinology, M. D. Anderson Cancer Center, University of Texas, Houston, Texas 77030

J. Wesley Pike,     (235), Departments of Pediatrics and Cell Biology, Baylor College of Medicine, Houston, Texas 77030 and Ligand Pharmaceuticals, Inc., San Diego, California 92121

Jan-Hindrik Ravesloot,     (445), Departments of Orthopedics, Cell Biology, and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

Craig Rhodes,     (539), National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Felice Rolnick,     (413), Renal Division, Jewish Hospital/Washington University, St. Louis, Missouri 63110

Gino Segre,     (321), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Susan M. Smith,     (287), Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706

Teruki Sone,     (235), Departments of Pediatrics and Cell Biology, Baylor College of Medicine, Houston, Texas 77030 and Ligand Pharmaceuticals, Inc., San Diego, California 92121

Gary S. Stein,     (47), Department of Cell Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655

Christina Thaller,     (287), V. and M. McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030

Kursad Turksen2,     (1), Medical...

Erscheint lt. Verlag 28.6.2014
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Anatomie / Neuroanatomie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-092500-6 / 0080925006
ISBN-13 978-0-08-092500-4 / 9780080925004
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 49,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich