Synthetic Analgesics -  J. Hellerbach,  O. Schnider,  H. Besendorf

Synthetic Analgesics (eBook)

Morphinans: Benzomorphans
eBook Download: PDF | EPUB
1966 | 1. Auflage
201 Seiten
Elsevier Reference Monographs (Verlag)
978-1-4831-5628-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Synthetic Analgesics

CHAPTER I

Chemistry of Morphinans


Publisher Summary


This chapter describes morphinans as members of a class of compounds possessing the main structural skeleton of morphine. The chemistry of the morphinan is very closely connected with that of morphine, and it starts from the elucidation of the structure of morphine. The chapter discusses the synthesis of analgesics with morphine-like activity, synthesis of N-methyl-morphinan, and synthesis of N-methyl-morphinan. By subjecting natural products to reactions that were either already well known or recently developed, many investigations were undertaken to confirm the morphine structure and to find compounds of greater pharmacological value. The desirable effect of morphine on pain that sets in rapidly even when the drug is administered in small doses is accompanied by a number of clinically undesirable side effects. These side effects—such as respiratory depression and development of tolerance that soon leads to addiction—limit its application. The primary aim of the chemists in modifying the morphine molecule was to obtain analgesics without side effects, especially without addictive properties. Although this has not yet been fully achieved, partial successes have been obtained.

1 INTRODUCTION


Morphinans are members of a class of compounds possessing the main structural skeleton of morphine. The numbering system (1–17) and designation of the rings (A–D) adopted for these compounds are the same as used for morphine. The close relationship existing between these two classes of compounds is best seen by comparing their main structural features as given below.

Three condensed six-membered rings form the partially hydrogenated phenanthrene fragment, one of which is aromatic (A) while the two others (B and C) are alicyclic. As in decaline the fusion of rings B and C can either be cis or trans depending upon the configuration at C13 and C14. Carbon 13 is quaternary and together with carbon 9 forms the junction with the heterocyclic ring (D). Although morphinan possesses three asymmetric carbon atoms, owing to the rigid structure of the molecule only two racemates are possible.

Morphinan could also be designated as a partially hydrogenated iminoethanophenanthrene or 2-aza-5,9-tetramethylene-6,7-benzo-bicyclo(l,3,3)-nonene-(6)(1). This nomenclature, however, will not be used in this survey. Preference is given to a chemical designation derived from the skeleton “morphinan” adding the appropriate substituents andadhering to the numbering system already mentioned.

Originally, this class of compounds had been named “morphans”, but, on the suggestion of ROBINSON(2), this was modified to “morphinan” since the name morphan had already been adopted for another class of compounds(3).

The chemistry of morphinan is very closely connected with that of morphine and starts from the elucidation of the structure of morphine by ROBINSON(4) and by SCHÖPF(5) shortly afterwards. These two papers made possible the systematic study of the structure of the morphine alkaloids. By subjecting natural products to reactions which were either already well known or recently developed, many investigations were undertaken to confirm the morphine structure proposed by ROBINSON, and to find compounds of greater pharmacological value. The desirable effect of morphine on pain which sets in rapidly even when the drug is administered in small doses, is accompanied by a number of clinically undesirable side-effects. These side-effects, such as respiratory depression(6) and development of tolerance which soon leads to addiction, limit its application.

The primary aim of the chemists in modifying the morphine molecule was to obtain analgesics without side-effects, especially without addictive properties. Although this has not yet been fully achieved, partial successes have been obtained, e.g. dihydrodesoxymorphine (desomorphine, Permonid(R)) is about ten times more active than morphine(7) and methyldihydromorphinone (Metopon(R)) is distinctly less addictive than morphine(8–11).

These partial successes gave rise to the hope that the final goal, to obtain an analgesic without any addictive properties, might still be reached. This naturally stimulated chemical work in the morphine field and led to the understanding of numerous correlations between chemical structure and pharmacological activity7, 12–14. Although we know now of a few exceptions, these generalizations may be summarized as follows(15, 16):

(a) Replacement of the phenolic hydroxyl group of morphine by an ether group diminishes its analgesic effect considerably. On the other hand, esterification increases the analgesic and addictive properties.

(b) Modification of the alcoholic hydroxyl group (by etherification, replacement by keto group, halogen etc.) increases the analgesic activity and the toxicity, at the same time diminishing the duration of the effect.

(c) Opening the furan ring reduces the efficacy as well as the toxicity.

(d) Substitution in the aromatic ring (A) lowers the analgesic activity.

(e) Substitution in the alicyclic ring (C) does not basically modify the activity.

(f) The formation of an N-oxide causes the activity to disappear; on quaternization of the tertiary amine a curare-like activity is observed.

(g) Replacing the N-methyl grouping with N-alkyl or N-alkenyl groups leads to compounds with an antagonistic effect and, most important, the undesirable respiratory depression caused by morphine is significantly diminished (17). There are well controlled studies showing that nalorphine retains some morphine-like respiratory depressant effect.

(h) The tertiary character of the nitrogen is essential for the specific activity of morphine.

(i) Opening the piperidine ring (morphimetine) destroys the analgesic activity completely.

2 SYNTHESIS OF ANALGESICS WITH MORPHINE-LIKE ACTIVITY


(a) Introduction


The elucidation of the structure of morphine and the knowledge of the relationship between chemical structure and physiological activity in morphine derivatives stimulated investigations directed towards the preparation of fragments of the complicated morphine molecule. It was hoped to obtain simpler compounds by total synthesis which would possess similar analgesic and antitussive properties but would be free of side-effects, especially of addictive properties. Following fragmentary efforts by various chemists around the turn of the century and during the next 25 years, synthetic work in the U.S.A. was supported mainly by the Committee on Drug Addiction of the National Research Council (USA) under the guidance of SMALL. EDDY et al. determined the pharmacological properties of these synthetic substances(7).

Other research centres became involved later in these endeavours to “improve” morphine by synthetic studies with morphine fragments.

Table I summarizes these synthetic accomplishments. In most of the groups 1–13 some analgesic activity was found in a few of the representatives, but in spite of intensive work on groups which at first seemed very promising, no useful compounds were discovered. For details we recommend the excellent surveys of BERGEL and MORRISON(16) and BECKETT(18).

TABLE I

On the other hand, work on groups 14 and 15 was very successful. The first representative of group 14, pethidine(19) (meperidine) proved to be of great importance and became the model for many other valuable compounds.

Group 15, methadone (Amidon(R) and/or Polamidon(R)) and analogues, is described in detail in the first volume of the series on Synthetic Analgesics(20).

In this second volume the results of chemical and pharmacological work with the morphinans 17 as well as the benzomorphans (group 16) shall be discussed.

(b) Piperidine derivatives


In 1939, stimulated by synthetic work in the field of spasmolytics and the results of the pharmacological assay of the compounds obtained, EISLEB(62–64) synthesized the ethyl ester of l-methyl-4-phenylpiperidine-4-carboxylic acid (pethidine, meperidine, Dolantin(R))(19).

SCHAUMANN(65) showed that this compound was a spasmolytic in which atropine-like neurotropic and papaverine-like musculo-tropic activity occurred together for the first time. In addition, its analgesic effect far exceeded that of any of the synthetic compounds then known. The manifold chemical modifications of the meperidine molecule developed in various centres will be briefly outlined since this became in many respects the starting point for research work within the group of morphinans. Experience gained with the pethidine group led to the discovery of valuable compounds among the morphinans. In other cases,...

Erscheint lt. Verlag 1.1.1966
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Naturwissenschaften Chemie
Technik
ISBN-10 1-4831-5628-1 / 1483156281
ISBN-13 978-1-4831-5628-6 / 9781483156286
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 19,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich