Principles of Lasers - Orazio Svelto

Principles of Lasers

(Autor)

Buch | Softcover
374 Seiten
2012 | 1982 ed.
Springer-Verlag New York Inc.
978-1-4615-7669-3 (ISBN)
85,55 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
This second edition, appearing about twenty years after the discovery of the laser is a substantially revised version of the first edition. It is, like the first, aimed at both classroom teaching and self-study by technical personnel interested in learning the principles of laser operation. In preparing the second edition the hope has been that both these aims will be better served as a result of the various improvements made. The main changes have been made with the following aims in mind: (i) To update the book. Thus new topics have been added (in particular on various new types of lasers, e. g., rare-gas-halide excimer lasers, color-center lasers, and free-electron lasers), while on the other hand some topics have been given less emphasis (again this applies particularly to some types of lasers, e. g., the ruby laser). Updating is especially important in the area of laser applications, and the chapter on this topic has therefore been com pletely rewritten. (ii) To make some improvements to the logical consis tency of the book by rearranging material and adding new material. Thus a few topics have been moved from one section to another and a new chapter entitled Laser Beam Transformation has been added. (iii) To further reduce the mathematical content, placing greater emphasis on physical descrip tions of phenomena."

1 Introductory Concepts.- 1.1 Spontaneous and Stimulated Emission, Absorption.- 1.1.1 Spontaneous Emission.- 1.1.2 Stimulated Emission.- 1.1.3 Absorption.- 1.2 The Laser Idea.- 1.3 Pumping Schemes.- 1.4 Properties of Laser Beams.- 1.4.1 Monochromaticity.- 1.4.2 Coherence.- 1.4.3 Directionality.- 1.4.4 Brightness.- Problems.- 2 Interaction of Radiation with Matter.- 2.1 Summary of Blackbody Radiation Theory.- 2.2 Absorption and Stimulated Emission.- 2.2.1 Rates of Absorption and Stimulated Emission.- 2.2.2 Allowed and Forbidden Transitions.- 2.2.3 Transition Cross Section, Absorption and Gain Coefficient.- 2.3 Spontaneous Emission.- 2.3.1 Semiclassical Approach.- 2.3.2 Quantum Electrodynamic Approach.- 2.3.3 Einstein Thermodynamic Treatment.- 2.3.4 Radiation Trapping, Superradiance, Superfluorescence, and Amplified Spontaneous Emission.- 2.4 Nonradiative Decay.- 2.5 Line Broadening Mechanisms.- 2.5.1 Homogeneous Broadening.- 2.5.2 Inhomogeneous Broadening.- 2.5.3 Combined Effect of Line Broadening Mechanisms.- 2.6 Saturation.- 2.6.1 Saturation of Absorption: Homogeneous Line.- 2.6.2 Gain Saturation: Homogeneous Line.- 2.6.3 Inhomogeneously Broadened Line.- 2.7 Degenerate Levels.- 2.8 Relation between Cross Section and Spontaneous Radiative Lifetime.- 2.9 Molecular Systems.- 2.9.1 Energy Levels of a Molecule.- 2.9.2 Level Occupation at Thermal Equilibrium.- 2.9.3 Radiative and Nonradiative Transitions.- Problems.- References.- 3 Pumping Processes.- 3.1 Introduction.- 3.2 Optical Pumping.- 3.2.1 Pumping Efficiency.- 3.2.2 Pump Light Distribution.- 3.2.3 Pumping Rate.- 3.3 Electrical Pumping.- 3.3.1 Electron Impact Excitation.- 3.3.2 Spatial Distribution of the Pump Rate.- 3.3.3 Pumping Efficiency.- 3.3.4 Excitation by (Near) Resonant Energy Transfer.- Problems.- References.- 4 Passive Optical Resonators.- 4.1 Introduction.- 4.2 Plane-Parallel Resonator.- 4.2.1 Approximate Treatment of Schawlow and Townes.- 4.2.2 Fox and Li Treatment.- 4.3 Confocal Resonator.- 4.4 Generalized Spherical Resonator.- 4.4.1 Mode Amplitudes, Diffraction Losses, and Resonance Frequencies.- 4.4.2 Stability Condition.- 4.5 Unstable Resonators.- Problems.- References.- 5 Continuous Wave and Transient Laser Behavior.- 5.1 Introduction.- 5.2 Rate Equations.- 5.2.1 Four-Level Laser.- 5.2.2 Three-Level Laser.- 5.3 CW Laser Behavior.- 5.3.1 Four-Level Laser.- 5.3.2 Three-Level Laser.- 5.3.3 Optimum Output Coupling.- 5.3.4 Reasons for Multimode Oscillation.- 5.3.5 Single-Line and Single-Mode Oscillation.- 5.3.6 Two Numerical Examples.- 5.3.7 Frequency Pulling and Limit to Monochromaticity.- 5.3.8 Lamb Dip and Active Stabilization of Laser Frequency.- 5.4 Transient Laser Behavior.- 5.4.1 Spiking Behavior of Single-Mode and Multimode Lasers.- 5.4.2 Q-Switching.- 5.4.2.1 Methods of Q-Switching.- 5.4.2.2 Operating Regimes.- 5.4.2.3 Theory of Q-Switching.- 5.4.2.4 A Numerical Example.- 5.4.3 Mode Locking.- 5.4.3.1 Methods of Mode Locking.- 5.4.3.2 Operating Regimes.- 5 5 Limits to the Rate Equations.- Problems.- References.- 6 Types of Lasers.- 6.1 Introduction.- 6.2 Solid-State Lasers.- 6.2.1 The Ruby Laser.- 6.2.2 Neodymium Lasers.- 6.3 Gas Lasers.- 6.3.1 Neutral Atom Lasers.- 6.3.2 Ion Lasers.- 6.3.2.1 Ion Gas Lasers.- 6.3.2.2 Metal Vapor Lasers.- 6.3.3 Molecular Gas Lasers.- 6.3.3.1 Vibrational—Rotational Lasers.- 6.3.3.2 Vibronic Lasers.- 6.3.3.3 Excimer Lasers.- 6.4 Liquid Lasers (Dye Lasers).- 6.4.1 Photophysical Properties of Organic Dyes.- 6.4.2 Characteristics of Dye Lasers.- 6.5 Chemical Lasers.- 6.6 Semiconductor Lasers.- 6.6.1 Photophysical Properties of Semiconductor Lasers.- 6.6.2 Characteristics of Semiconductor Lasers.- 6.7 Color-Center Lasers.- 6.8 The Free-Electron Laser.- 6.9 Summary of Performance Data.- Problems.- References.- 7 Properties of Laser Beams.- 7.1 Introduction.- 7.2 Monochromaticity.- 7.3 First-Order Coherence.- 7.3.1 Complex Representation of Polychromatic Fields.- 7.3.2 Degree of Spatial and Temporal Coherence.- 7.3.3 Measurement of Spatial and Temporal Coherence.- 7.3.4 Relation between Temporal Coherence and Monochromaticity.- 7.3.5 Some Numerical Examples.- 7.4 Directionality.- 7.5 Laser Speckle.- 7.6 Brightness.- 7.7 Higher-Order Coherence.- Problems.- References.- 8 Laser Beam Transformation.- 8.1 Introduction.- 8.2 Transformation in Space. Gaussian Beam Propagation.- 8.3 Transformation in Amplitude: Laser Amplification.- 8.4 Transformation in Frequency: Second-Harmonic Generation and Parametric Oscillation.- 8.4.1 Physical Picture.- 8.4.1.1 Second-Harmonic Generation.- 8.4.1.2 Parametric Oscillation.- 8.4.2 Analytical Treatment.- 8.4.2.1 Parametric Oscillation.- 8.4.2.2 Second-Harmonic Generation.- Problems.- References.- 9 Applications of Lasers.- 9.1 Introduction.- 9.2 Applications in Physics and Chemistry.- 9.3 Applications in Biology and Medicine.- 9.4 Material Working.- 9.5 Optical Communications.- 9.6 Measurement and Inspection.- 9.7 Thermonuclear Fusion.- 9.8 Information Processing and Recording.- 9.9 Military Applications.- 9.10 Holography.- 9.11 Concluding Remarks.- References.- Appendixes.- A Space-Dependent Rate Equations.- B Physical Constants.- Answers to Selected Problems.

Erscheint lt. Verlag 12.10.2012
Zusatzinfo Bibliography; Illustrations, black and white
Verlagsort New York
Sprache englisch
Maße 152 x 229 mm
Gewicht 526 g
Themenwelt Medizin / Pharmazie Studium 1. Studienabschnitt (Vorklinik)
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Physik / Astronomie Optik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4615-7669-5 / 1461576695
ISBN-13 978-1-4615-7669-3 / 9781461576693
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Lehmanns FACTS

von Bernhard Kolster; Markus M Voll; Helge Chr. Johannssen

Buch | Softcover (2021)
Lehmanns Media (Verlag)
16,95
Das Lernskript für den BMS für Human- und Zahnmediziner

von Deniz Tafrali; Paul Yannick Windisch; Sinan Barus

Buch | Softcover (2023)
Urban & Fischer in Elsevier (Verlag)
55,00

von Paul Yannick Windisch; Deniz Tafrali

Buch | Softcover (2022)
Urban & Fischer in Elsevier (Verlag)
27,00