Long-Memory Processes (eBook)
XVII, 884 Seiten
Springer Berlin (Verlag)
978-3-642-35512-7 (ISBN)
Jan Beran is a Professor of Statistics at the University of Konstanz (Department of Mathematics and Statistics). After completing his PhD in Mathematics at the ETH Zurich, he worked at several U.S. universities and the University of Zurich. He has a broad range of interests, from long-memory processes and asymptotic theory to applications in finance, biology and musicology.
Yuanhua Feng is a Professor of Econometrics at the University of Paderborn's Department of Economics. He previously worked at the Heriot-Watt University, UK, after completing his PhD and postdoctoral studies at the University of Konstanz. His research interests include financial econometrics, time series and semiparametric modeling.
Sucharita Ghosh (M.Stat. Indian Statistical Institute; PhD Univ. Toronto) is a statistician at the Swiss Federal Research Institute WSL. She has taught at the University of Toronto, UNC Chapel Hill, Cornell University, the University of Konstanz, University of York and the ETH Zurich. Her research interests include space-time processes, nonparametric curve estimation and empirical transforms.
Rafal Kulik is an Associate Professor at the University of Ottawa's Department of Mathematics and Statistics. He has previously taught at the University of Wroclaw, University of Ulm and University of Sydney. His research interests include limit theorems for weakly and strongly dependent random variables, time series analysis and heavy-tailed phenomena, with applications in finance.
Jan Beran is a Professor of Statistics at the University of Konstanz (Department of Mathematics and Statistics). After completing his PhD in Mathematics at the ETH Zurich, he worked at several U.S. universities and the University of Zurich. He has a broad range of interests, from long-memory processes and asymptotic theory to applications in finance, biology and musicology. Yuanhua Feng is a Professor of Econometrics at the University of Paderborn’s Department of Economics. He previously worked at the Heriot-Watt University, UK, after completing his PhD and postdoctoral studies at the University of Konstanz. His research interests include financial econometrics, time series and semiparametric modeling. Sucharita Ghosh (M.Stat. Indian Statistical Institute; PhD Univ. Toronto) is a statistician at the Swiss Federal Research Institute WSL. She has taught at the University of Toronto, UNC Chapel Hill, Cornell University, the University of Konstanz, University of York and the ETH Zurich. Her research interests include space-time processes, nonparametric curve estimation and empirical transforms. Rafal Kulik is an Associate Professor at the University of Ottawa’s Department of Mathematics and Statistics. He has previously taught at the University of Wroclaw, University of Ulm and University of Sydney. His research interests include limit theorems for weakly and strongly dependent random variables, time series analysis and heavy-tailed phenomena, with applications in finance.
Definition of Long Memory.- Origins and Generation of Long Memory.- Mathematical Concepts.- Limit Theorems.- Statistical Inference for Stationary Processes.- Statistical Inference for Nonlinear Processes.- Statistical Inference for Nonstationary Processes.- Forecasting.- Spatial and Space-Time Processes.- Resampling.- Function Spaces.- Regularly Varying Functions.- Vague Convergence.- Some Useful Integrals.- Notation and Abbreviations.
Erscheint lt. Verlag | 14.5.2013 |
---|---|
Zusatzinfo | XVII, 884 p. 89 illus., 60 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Technik | |
Wirtschaft | |
Schlagworte | 62Mxx, 62M09, 62M10, 60G18, 60G22, 60G52, 60G60, 91B84 • Asymptotic Theory • fractal processes • long-memory processes • Statistical Applications • time series analysis/spatial processes/space-time processes |
ISBN-10 | 3-642-35512-9 / 3642355129 |
ISBN-13 | 978-3-642-35512-7 / 9783642355127 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich