Mitochondrial Biogenesis and Breakdown - Valentin Luzikov

Mitochondrial Biogenesis and Breakdown

Buch | Softcover
362 Seiten
2012 | Softcover reprint of the original 1st ed. 1985
Springer-Verlag New York Inc.
978-1-4684-1652-7 (ISBN)
117,69 inkl. MwSt
It is a strange fact that many modern cell biochemists have a keen interest in biosynthetic processes, such as protein and nucleic biosynthesis or organelle biogenesis, but tend to regard degradative processes merely as irritating reactions that disrupt the flow of synthetic reactions. Historically, the elucidation of catabolic pathways preceded that of anabolic pathways, so that there is also a tendency to regard work on proteases, phospholipases, nucleases, etc., as somewhat "old-fashioned. " It is the great contribution of Professor Luzikov's book to show that, at least in the case of mito- chondrial research, the separation of studies on anabolic and cata- bolic processes has been very harmful. In an extremely erudite and measured way, the author carefully develops the argument that we can only understand mitochondrial biogenesis fully if we take into account the role of degradative processes. The action of lytic enzymes is shown not to be a random affair, but rather a process that is fully integrated into the process of mitochondrial assembly. A second important contribution of this book is the fact that it contains a masterly review of the fundamental literature on mitochon- drial structure, function, breakdown and synthesis presented in an integrated and logical manner.

One Structural Organization of Mitochondria.- 1.1 Partitioning of Mitochondria.- 1.1.1 Resolution of Mitochondrial Compartments.- 1.1.2 Localization of the More Important Mitochondrial Enzymic Systems.- 1.1.2.1 Enzymes of the Outer Mitochondrial Membrane.- 1.1.2.2 Enzymes of the Intermembrane Space.- 1.1.2.3 Enzymes of the Inner Mitochondrial Membrane.- 1.1.2.4 Enzymes of the Matrix.- 1.1.3 Lipid Composition of Mitochondrial Membranes.- 1.2 Structural Organization of the Outer Mitochondrial Membrane.- 1.3 Structural Organization of the Inner Mitochondrial Membrane.- 1.3.1 Mitochondrial Inner-Membrane Components.- 1.3.1.1 NADH-Ubiquinone Reductase.- 1.3.1.2 Succinate-Ubiquinone Reductase.- 1.3.1.3 Cytochromes b.- 1.3.1.4 Cytochrome cl.- 1.3.1.5 Rieske Iron — Sulfur Protein.- 1.3.1.6 Other Components of the bcl Segment.- 1.3.1.7 Cytochrome c Oxidase.- 1.3.1.8 ATPase Complex.- 1.3.1.9 Adenine Nucleotide Carrier.- 1.3.1.10 Inorganic Phosphate Carrier.- 1.3.1.11 Pyridine Nucleotide Transhydrogenase.- 1.3.1.12 Inorganic Pyrophosphatase.- 1.3.1.13 Carriers of Ca2+ Ions.- 1.3.1.14 Other Mitochondrial Inner-Membrane Components.- 1.3.2 Principles of Mitochondrial Inner-Membrane Structural Organization.- 1.3.2.1 Mitochondrial Inner-Membrane Asymmetry.- 1.3.2.1a NADH Dehydrogenase.- 1.3.2.1b Succinate Dehydrogenase.- 1.3.2.1c Cytochromes b and cl, Rieske Iron — Sulfur Protein.- 1.3.2.1d Cytochrome c.- 1.3.2.1e Cytochromes ? and ?3.- 1.3.2.1f ATPase Complex.- 1.3.2.1g Transhydrogenase.- 1.3.2.1h Adenine Nucleotide Carrier.- 1.3.2.1i Inorganic Phosphate Carrier.- 1.3.2.2 Oligoenzyme Complexes of the Inner Mitochondrial Membrane.- 1.3.2.2a Complexes Constituting the Respiratory Chain.- 1.3.2.2b ATPase Complex.- 1.3.2.2c Mutual Arrangement of the Complexes in the Inner Mitochondrial Membrane.- 1.3.2.3 Phospholipids of the Inner Mitochondrial Membrane.- Two General Manifestations and Molecular Mechanisms of Mitochondrial Degradation.- 2.1 General Manifestations of Mitochondrial Degradation.- 2.1.1 Impairment of Oxidative Phosphorylation and Other Functions.- 2.1.2 Loss of Low-Molecular-Weight Mitochondrial Components.- 2.1.3 Release of Soluble Proteins from Mitochondria.- 2.1.4 Mitochondrial Swelling.- 2.1.5 Morphological Alterations in Mitochondria.- 2.1.6 Sequence of Events During Aging of Isolated Mitochondria.- 2.2 Molecular Mechanisms of Mitochondrial Degradation.- 2.2.1 Role of Endogenous Phospholipase A2 in Mitochondrial Degradation.- 2.2.1.1 Specificity of Mitochondrial Phospholipase A2.- 2.2.1.2 Activators and Inhibitors of Mitochondrial Phospholipase A2.- 2.2.1.3 Localization of Phospholipase A2 in Mitochondria.- 2.2.1.4 Isolation of Mitochondrial Phospholipase A2.- 2.2.1.5 Mitochondrial Alterations Associated with the Action of Endogenous Phospholipase A2.- 2.2.1.6 Possible Mechanisms of Mitochondrial Degradation Induced by Endogenous Phospholipase A2.- 2.2.1.7 Reutilization of Mitochondrial Phospholipid Hydrolysis Products.- 2.2.2 Mitochondrial Degradation Owing to Lipid Oxidation.- 2.2.2.1 Mitochondrial Swelling and Lysis Induced by Ascorbate, Fe2+ Ions, or Glutathione.- 2.2.2.2 Mitochondrial Degradation Linked with NADPH Oxidation.- 2.2.2.3 Mitochondrial Degradation in the Presence of Glutathione, and the Protective Function of Glutathione Peroxidase.- 2.2.2.4 Lipid Oxidation in Mitochondrial Membranes Induced by Chaotropic Agents.- 2.2.2.5 Role of Superoxide Radicals in Mitochondrial Lipid Oxidation.- 2.2.3 Mitochondrial Proteinases and Their Role in Organelle Degradation.- 2.2.3.1 Amino Acid Production by Isolated Mitochondria.- 2.2.3.2 Some Data on Mitochondrial Proteinases.- 2.2.3.3 Breakdown of Mitochondrial Translation Products.- Three Mechanisms of Mitochondrial Stabilization.- 3.1 Role of Oxidative Phosphorylation in Stabilization of Isolated Mitochondria.- 3.2 Studies on the Molecular Mechanisms of Mitochondrial Stabilization in Model Systems.- 3.2.1 Action of Exogenous Phospholipase A2 on the Mitochondrial Oxidative Phosphorylation System.- 3.2.1.1 Energy-Transducing Machinery.- 3.2.1.2 Respiratory Chain.- 3.2.2 Increasing Resistance of the Oxidative Phosphorylation System to Exogenous Phospholipase A2.- 3.2.2.1 Energy-Transducing Machinery.- 3.2.2.2 Respiratory Chain.- 3.2.3 Proteinase Action on the Mitochondrial Oxidative Phosphorylation System.- 3.2.3.1 Energy-Transducing Machinery.- 3.2.3.2 Respiratory Chain.- 3.2.4 Stabilization of the Oxidative Phosphorylation System Against Exogenous Proteinases.- 3.2.4.1 Respiratory Chain.- 3.2.4.2 Energy-Transducing Machinery.- 3.2.5 Some Issues Arising from Model Experiments.- 3.3 Protection of Mitochondrial Lipids from Peroxidation.- 3.3.1 Lipid Peroxidation Induced by Fe2+ Ions.- 3.3.2 Lipoxygenase Action on Mitochondrial Phospholipids.- Four Mitochondrial Degradation in the Cell.- 4.1 Mechanisms of Intracellular Mitochondrial Degradation.- 4.1.1 Mode of Mitochondrial Turnover.- 4.1.2 Role of Mitochondrial Phospholipase A in Organelle Degradation In Vivo.- 4.1.3 Role of Mitochondrial Proteinases in Mitochondrial Degradation In Vivo.- 4.1.4 Role of Lipid Oxidation in Mitochondrial Degradation In Vivo.- 4.2 Role of Oxidative Phosphorylation in Mitochondrial Survival In Vivo.- 4.2.1 Effects of Anaerobiosis on Yeast Mitochondria.- 4.2.2 Degradation of Yeast Mitochondria Induced by Respiratory Inhibitors and Uncouplers.- 4.2.3 Degradation of Yeast Mitochondria During Glucose Repression.- 4.2.4 Changes Induced in Yeast Mitochondria by Inhibitors of Mitochondrial Protein Synthesis.- 4.2.5 Some General Aspects of Mitochondrial Degradation in the Cell.- 4.2.5.1 Trigger Mechanisms of Degradation.- 4.2.5.2 Depth of Mitochondrial Degradation.- Five Topography of the Synthesis of Mitochondrial Proteins.- 5.1 Criteria of the Origin of Mitochondrial Proteins.- 5.1.1 Composition and Properties of Mitochondria from Cells Grown with Inhibitors of Mitochondrial Protein Synthesis.- 5.1.2 Effects of Protein-Synthesis Inhibitors on Amino Acid Incorporation in Mitochondria In Vivo.- 5.1.3 Mitochondria of Yeast Cytoplasmic Petite Mutants.- 5.1.4 Protein Synthesis in Isolated Mitochondria.- 5.1.5 Genetic Criteria.- 5.2 Topography of the Synthesis of Proteins of Different Mitochondrial Compartments.- 5.2.1 Outer Mitochondrial Membrane.- 5.2.2 Inner Mitochondrial Membrane.- 5.2.2.1 NADH Dehydrogenase and Succinate Dehydrogenase.- 5.2.2.2 Respiratory Chain bcl Segment.- 5.2.2.3 Cytochrome c.- 5.2.2.4 Cytochrome c Oxidase.- 5.2.2.5 ATPase Complex.- 5.2.2.6 Adenine Nucleotide Carrier.- 5.2.2.7 Transport System for Tricarboxylic-Acid-Cycle Substrates.- 5.2.2.8 Other Inner-Membrane Components.- 5.2.3 Mitochondrial Matrix.- 5.2.3.1 Tricarboxylic-Acid Cycle and Linked Systems.- 5.2.3.2 Mitochondrial Protein-Synthesizing System.- 5.3 Relative Contribution of Mitochondrial and Cytoplasmic Translation to Mitochondrial Formation.- Six Mitochondrial Assembly.- 6.1 Some Model Systems Used in Studying Mitochondrial Assembly.- 6.1.1 Respiratory Adaptation.- 6.1.2 Glucose Derepression.- 6.1.3 Fungal Spore Germination.- 6.2 Mechanisms of Protein Transport Across Biological Membranes.- 6.2.1 Cotranslational Protein Transport Across Membranes.- 6.2.2 Posttranslational Polypeptide Transport Across Membranes.- 6.2.2.1 Transmembrane Protein Transport Involving Subunit Separation and Reversible Unfolding.- 6.2.2.2 Transfer of Soluble and Membrane Proteins in Transport Vesicles.- 6.3 Protein Transport Across Mitochondrial Membranes.- 6.3.1 Cotranslational Discharge of Cytoplasmically Synthesized Polypeptides into Mitochondria.- 6.3.2 Posttranslational Transport of Cytoplasmically Synthesized Polypeptides into Mitochondria.- 6.3.3 Precursors of Cytoplasmically Made Mitochondrial Proteins.- 6.3.4 Maturation of Precursors to Cytoplasmically Made Mitochondrial Proteins In Vivo.- 6.3.5 Import and Processing of Protein Precursors in Isolated Mitochondria.- 6.3.6 Energy Dependence of Precursor Transport into Mitochondria.- 6.3.7 Maturases: Properties, Multiplicity, and Localization in Mitochondria.- 6.3.8 Stages of Processing of Cytoplasmically Made Precursors to Mitochondrial Proteins.- 6.3.9 Receptor Sites Involved in the Transport of Cytoplasmically Made Proteins Across Mitochondrial Membranes.- 6.3.10 Mixed Co-and-Posttranslational Mechanism for the Transfer of Cytoplasmic Polypeptides Across Mitochondrial Membranes.- 6.4 Incorporation of Mitochondrial Translation Products into the Inner Mitochondrial Membrane.- 6.4.1 Properties of Intramitochondrially Made Polypeptides.- 6.4.2 Localization of Mitochondrial Ribosomes.- 6.4.3 Intramitochondrially Made Precursors to Some Inner-Membrane Proteins.- 6.5 Assembly of Enzymic Complexes in the Inner Mitochondrial Membrane.- 6.5.1 Free Subunit Pools for the Complexes in the Inner Mitochondrial Membrane.- 6.5.2 Stepwise Assembly of Enzymic Complexes in the Inner Mitochondrial Membrane.- 6.5.3 Mitochondrial Inner Membrane Assembly Under Deficiency of Individual Respiratory-Chain and Phosphorylation Components.- 6.5.3.1 Heme Deficiency.- 6.5.3.2 Copper Deficiency.- 6.5.3.3 Coenzyme Q Deficiency.- 6.5.3.4 Cytochrome b Deficiency.- 6.5.3.5 Deficiency of Cytochrome c Oxidase Polypeptides.- 6.5.3.6 Deficiency of ATP Synthetase Components.- 6.6 Concluding Remarks.- Seven Reconstitution of the Inner Mitochondrial Membrane and its Fragments.- 7.1 Specific Binding of Individual Protein Components to the Inner Mitochondrial Membrane.- 7.1.1 Binding of Cytochrome c.- 7.1.2 Binding of Soluble Succinate Dehydrogenase.- 7.1.3 Binding of Fl-ATPase.- 7.2 Mitochondrial Inner Membrane Fragmentation and Reassociation of Fragments.- 7.2.1 Reassociation of Crude Fragments of the Inner Mitochondrial Membrane.- 7.2.2 Respiratory Chain Reconstitution from Oligoenzyme Complexes.- 7.3 Formation of Energy-Transforming and Transport Systems on the Basis of Phospholipid Vesicles.- 7.3.1 Reconstitution of the Respiratory Chain.- 7.3.2 Formation of Membrane Systems Capable of Energy Transformation and Energy-Dependent Functions.- 7.3.2.1 Reconstitution of an Energy-Transducing System from the Amorphous Membrane Fraction and Phospholipids.- 7.3.2.2 Reconstitution of Coupling Sites I and III from the Amorphous Membrane Fraction and Phospholipids.- 7.3.2.3 Formation of Asymmetric Lipoprotein Vesicles.- 7.3.2.4 Factors Determining the Incorporation of Enzymic Complexes into Phospholipid Vesicles.- 7.3.2.5 Artificial Proteoliposomes Containing Transhydrogenase, and Adenine Nucleotide and Phosphate Carriers.- 7.4 Reconstitution of Enzymic Complexes of the Inner Mitochondrial Membrane.- 7.4.1 NADH-Ubiquinone Reductase (Complex I).- 7.4.2 Succinate-Ubiquinone Reductase (Complex II).- 7.4.3 Ubiquinol-Cytochrome c Reductase (Complex III).- 7.4.4 Cytochrome c Oxidase (Complex IV).- 7.4.5 Oligomycin-Sensitive ATPase (Complex V).- Eight Control Over Mitochondrial Assembly.- 8.1 Formation of Abnormalities in the Inner Mitochondrial Membrane and Their Elimination During Respiratory System Development.- 8.1.1 Lack of Positive Correlation Between Cell Respiration and Cytochrome Content in Yeast.- 8.1.2 Involvement of Proteinases in the Control Over Formation of the Mitochondrial Respiratory Chain.- 8.1.3 Formation of Nonfunctioning Respiratory-Chain Components and Their Elimination During Differentiation of Yeast Mitochondria.- 8.1.3.1 Activities of Respiratory-Chain Segments: Membrane Fractions from Glucose-Grown Yeast.- 8.1.3.2 Activities of Respiratory-Chain Segments: Membrane Fractions from Galactose-Grown Yeast.- 8.1.4 Selection by a Performance Criterion as a Mechanism Controlling Mitochondrial Formation.- 8.2 Membrane-Bound Proteinases of Yeast Mitochondria and Their Possible Involvement in the Regulation of Mitochondrial Formation.- 8.2.1 Proteolysis of Mitochondrial Translation Products in Yeast Cells.- 8.2.2 Proteolytic System of Yeast Mitochondria Responsible for the Breakdown of Intramitochondrially Made Polypeptides.- 8.2.3 Regulation of the Breakdown of Mitochondrial Translation Products in Yeast.- 8.2.4 Some General Aspects of Proteolytic Control of Mitochondrial Inner Membrane Assembly.- Nine A Broader Look at the Prospects for Further Studies.- Addendum.- References.

Zusatzinfo XVI, 362 p.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Gewicht 728 g
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Anatomie / Neuroanatomie
ISBN-10 1-4684-1652-9 / 1468416529
ISBN-13 978-1-4684-1652-7 / 9781468416527
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Struktur und Funktion

von Martin Trepel

Buch | Softcover (2021)
Urban & Fischer in Elsevier (Verlag)
44,00