De Rham Cohomology of Differential Modules on Algebraic Varieties
Springer Basel (Verlag)
978-3-0348-9522-4 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
1 Regularity in several variables.- §1 Geometric models of divisorially valued function fields.- §2 Logarithmic differential operators.- §3 Connections regular along a divisor.- §4 Extensions with logarithmic poles.- §5 Regular connections: the global case.- §6 Exponents.- Appendix A: A letter of Ph. Robba (Nov. 2, 1984).- Appendix B: Models and log schemes.- 2 Irregularity in several variables.- §1 Spectral norms.- §2 The generalized Poincaré-Katz rank of irregularity.- §3 Some consequences of the Turrittin-Levelt-Hukuhara theorem.- §4 Newton polygons.- §5 Stratification of the singular locus by Newton polygons.- §6 Formal decomposition of an integrable connection at a singular divisor.- §7 Cyclic vectors, indicial polynomials and tubular neighborhoods.- 3 Direct images (the Gauss-Manin connection).- §1 Elementary fibrations.- §2 Review of connections and De Rham cohomology.- §3 Dévissage.- §4 Generic finiteness of direct images.- §5 Generic base change for direct images.- §6 Coherence of the cokernel of a regular connection.- §7 Regularity and exponents of the cokernel of a regular connection.- §8 Proof of the main theorems: finiteness, regularity, monodromy, base change (in the regular case).- Appendix C: Berthelot’s comparison theorem on OXDX-linear duals.- Appendix D: Introduction to Dwork’s algebraic dual theory.- 4 Complex and p-adic comparison theorems.- §1 Review of analytic connections and De Rham cohomology.- §2 Abstract comparison criteria.- §3 Comparison theorem for algebraic vs.complex-analytic cohomology.- §4 Comparison theorem for algebraic vs. rigid-analytic cohomology (regular coefficients).- §5 Rigid-analytic comparison theorem in relative dimension one.- §6 Comparison theorem for algebraic vs. rigid-analytic cohomology (irregular coefficients).- §7 The relative non-archimedean Turrittin theorem.- Appendix E: Riemann’s “existence theorem” in higher dimension, an elementary approach.- References.
Erscheint lt. Verlag | 5.11.2012 |
---|---|
Reihe/Serie | Progress in Mathematics ; 189 |
Zusatzinfo | VII, 214 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 355 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Medizin / Pharmazie | |
Schlagworte | Algebra • Algebraic Geometry • Algebraic Varieties • Dimension • Divisor • Geometrie • Grad |
ISBN-10 | 3-0348-9522-4 / 3034895224 |
ISBN-13 | 978-3-0348-9522-4 / 9783034895224 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich