Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. - Treats fluidization as a branch of transport phenomena- Demonstrates how to do transient, multidimensional simulation of multiphase processes- The first book to apply kinetic theory to flow of particulates- Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed- Explains the origin of bubbles and the concept of critical granular flow- Presents clearly written exercises at the end of each chapter to facilitate understanding and further study
Front Cover 1
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions 4
Copyright Page 5
Table of Contents 6
Preface 10
Nomenclature 14
Chapter 1. Transport Equations 22
1.1 Basic Approach 22
1.2 Mass Balances 23
1.3 Momentum Balances 24
1.4 Energy Balances 28
1.5 Entropy Balance 31
1.6 Mixture Equations 32
1.7 Multicomponent Multiphase Flow 41
Chapter 2. One-Dimensional Steady Gas-Solid Flow 52
2.1 One-Dimensional, Steady Mixture Momentum Balance 52
2.2 One-Dimensional, Steady Gas Momentum Balance: Pressure Drop in Both Phases — Model A 54
2.3 Fluid Particle Drag 56
2.4 Buoyancy 58
2.5 Drag for Models B and C 60
2.6 Entrance Length in Pneumatic Transport 61
2.7 Pressure Drop 66
2.8 Pressure Drop Correlation in a Dilute Lift Line 72
Chapter 3. Drift Flux 82
3.1 Introduction 82
3.2 Hold-Up in Homogeneous and Slip Flow 82
3.3 Single Particle Analysis 83
3.4 Ergun Equation Prediction 84
3.5 Two Regimes in a Bubble Column 87
3.6 Other Applications 89
Chapter 4. Critical Granular Flow 94
4.1 One-Dimensional Granular Flow Momentum Balance 94
4.2 One-Dimensional Statics: Jannssen Equation 96
4.3 Incompressible, Frictionless Flow and Discharge 98
4.4 Thermodynamics of Powders: Compressibility 100
4.5 Critical Flow Theory for Granular Materials 103
4.6 Example of Critical Granular Flow 107
4.7 "Sound Speed" from Kinetic Theory 109
Chapter 5. The Fluidized State 118
5.1 Introduction: Fluidization Regimes 118
5.2 Minimum Fluidization Velocity 119
5.3 Geldart's Classification of Powders 125
5.4 Kinetic Energy Dissipation Analysis 127
Chapter 6. On the Origin of Bubbles 136
6.1 Introduction 136
6.2 Void Propagation in Incompressible Fluids 137
6.3 Shocks and Dispersion with No Solids Stress 140
6.4 Bubbling Criterion for Small Particles 142
Chapter 7. Inviscid Multiphase Flows: Bubbling Beds 150
7.1 Basic Equations 150
7.2 Compressible Granular Flow 152
7.3 Well-Posedness of Two-Phase Models 155
7.4 Homogeneous Flow and Pressure Propagation 160
7.5 Solids Vorticity and Void Propagation 162
7.6 Davidson Bubble Model 167
7.7 Computer Fluidization Models 170
7.8 Comparison of Computations to Observations 175
Chapter 8. Viscous Flow and Circulating Fluidized Beds 218
8.1 Introduction 218
8.2 Multiphase Navier-Stokes Equation Model 219
8.3 Dimensional Analysis: Scale Factors 222
8.4 CFB or Riser Flow: Experimental 228
8.5 Need for Clusters in One-D Modeling 235
8.6 Computation of Cluster Flow 237
8.7 Computation of Core-Annular Regime 245
8.8 Radial Profiles and Turbulence 249
Chapter 9. Kinetic Theory Approach 260
9.1 Introduction 260
9.2 Maxwellian Distribution for Particles 261
9.3 Properties of the Maxwellian State 263
9.4 Dynamics of an Encounter between Two Particles 265
9.5 The Frequency of Collisions 268
9.6 Mean Free Path 273
9.7 Elementary Treatment of Transport Coefficients 274
9.8 Boltzmann Integral-Differential Equation 277
9.9 Maxwell's Transport Equation 280
9.10 Conservation Laws with No Collisions 282
9.11 Second Approximation to the Frequency Distribution 284
9.12 Integral Equation Solver Strategy 293
9.13 Viscous Kinetic Stress Tensor 295
9.14 Dense Transport Theorem 297
9.15 Particulate Momentum Equation 300
9.16 Fluctuating Kinetic Energy Equation 302
9.17 Viscosity-Collisional Momentum Transfer 305
9.18 Granular Conductivity 311
Chapter 10. Applications of Kinetic Theory 318
10.1 Granular Shear Flow 318
10.2 Flow down a Chute 328
10.3 Bubbling Bed: Flow Patterns 332
10.4 Liquid-Solid Fluidization 339
10.5 Circulating Fluidized Bed Loop Simulation 345
10.6 Maximum Solids Circulation in a CFB 351
Chapter 11. Kinetic Theory of Granular Mixtures 358
11.1 Empirical Input: Restitution Coefficients 358
11.2 Boltzmann Equations for a Mixture 360
11.3 Dense Transport Theorem 360
11.4 Granular Temperatures and Applications 362
11.5 Particle-to-Particle Drag 364
11.6 Summary 366
Chapter 12. Sedimentation and Consolidation 376
12.1 Conservation of Particles 376
12.2 Settling in a Sedimentation Column: Introduction 378
12.3 Free Settling 381
12.4 Compression Settling 387
12.5 Consolidation: Relation to Osmotic Pressure 391
12.6 Electrokinetic Phenomenon: Zeta Potential 397
12.7 Effect of Zeta Potential on Sedimentation 400
Appendices: Formulation of Continuum Problems: Introduction 412
Appendix A: Overall (Macroscopic Balances) 414
Appendix B: Eulerian Approach: One-D Energy Balance 426
Appendix C: Leibniz Formula and Relation to Transport 432
Appendix D: Lagrangian Approach: One-D Conservation of Species and Population Balance 434
Appendix E: Reynolds Transport Theorem 444
Appendices: The Methods of Characteristics: Introduction 450
Appendix F: First Order Partial Differential Equation 452
Appendix G: Solution of a Hyperbolic System of First Order Partial Differential Equations 462
Index 478
NOMENCLATURE
A Surface area, m2
Ak Constant related to phase k pressure
Aκ Constant, used to evaluate conductivity
a Area
A Constant vector, Chapman and Cowling’s (1961) notation
a Cross-sectional area
av Volumetric compressibility, 1/G
Bk Constant related to phase k viscosity
Bμ Constant, used to evaluate viscosity
B Constant vector, Chapman and Cowling’s (1961) notation
bij Mobilities, related to Onsager friction coefficients
C Peculiar particle velocity = c - v
C Propagation velocity in Chapter 6
CD Drag coefficient
Cs Critical or sonic velocity
Cv Granular specific heat
Cσ Specific heat at a constant stress
c Instantaneous particle velocity
c12 Relative velocity = c1 – c2
D Diameter
d Dielectric constant
D Diffusion coefficient or consolidation coefficient
Diss Dissipation of energy, J/s
Do Orifice diameter
Dt Tube diameter
dp Diameter of particle
E Electric field strength
EM Electrophoretic mobility
e Restitution coefficient
e Void ratio
eyx Unit shearing stress in the x–y plane
F Flux
f External force per unit mass acting on the particle
fi Force acting on phase i
˙i Force per unit mass acting on phase i
f Frequency distribution function of particle velocities
fg Gas wall friction factor
f(0) Maxwellian distribution function
f(2) Pair distribution function
G Particle-particle modulus (∂Ps/∂εs) = (∂σ/∂εs), N/m2
G Center of mass velocity, Eq. (9.31)
g Acceleration due to gravity
g0 Radial distribution function
g Gravitational acceleration
∼ Buoyancy group, g(ρs – ρf)/ρs
H Height of interface
H0 Initial slurry height
¯ Dimensionless height of interface
hi Enthalpy of phase i per unit mass, J/kg
in Enthalpy of phase i at non-equilibrium
hv Volumetric heat transfer coefficient, kW/m3
I Current
I(A) Integral of A, Chapman and Cowling’s (1961) notation
I(B) Integral of B, Chapman and Cowling’s (1961) notation
I Unit matrix or unit tensor
J Bracket integral, Chapman and Cowling’s (1961) notation
Jm Mass flux
Js Maximum solids flux
jgs Drift flux of gas ε(vg−v¯)
K Effective friction coefficient defined by Eq. (4.11)
k Thermal conductivity, J/sec-m2-K
k Permeability
kc Cohesive force per unit area
kB Boltzmann constant
k Unit vector along the line from center of particle 1 to 2
L Length
Mean free path
M Molecular weight
Mi Molecular weight of species i, kg/mol
m Mass of particle
mi Mass of phase i, kg
m′i Mass of rate of production of phase i, kg/m3 total-s
m′is Specific rate of production of phase i, kg/m3“i”-s
m′k Rate of phase k production, kg/s-m3
Nc Source like contribution defined by Eq. (9.192)
N12 Number of binary collisions per unit time per unit volume
n Number of particles per unit volume
ni Number of particles of type i per unit volume
n Normal, outward drawn
P Pressure
Pc Collisional pressure like contribution defined by Eq. (9.193)
Pk Pressure of phase k
Pi Pressure of phase i, Pa
p Particle stress or pressure tensor
Pc Collisional stress tensor
Pk Kinetic stress tensor
Pi Momentum supply or phase interaction, N/m3
Q Quantity like mass, momentum or energy
Qi Volumetric flow rate of phase i
Qj Heat input into phase i, J
q Charge, electrical
qi Net rate of heat outflow out of phase i, kW/m3
q Conduction like flux vector of fluctuation energy
R Ideal gas law constant, J/mol-K
Re Reynolds number
r Radius of particle or radial coordinate
rB Bubble radius
ri Rate of reaction of component i, mol/m3-s
r Position vector
rc Center of mass position vector
S...
Erscheint lt. Verlag | 2.12.2012 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie |
Naturwissenschaften ► Chemie ► Technische Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Strömungsmechanik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-08-051226-7 / 0080512267 |
ISBN-13 | 978-0-08-051226-6 / 9780080512266 |
Haben Sie eine Frage zum Produkt? |
Größe: 39,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 12 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich