Nonparametric Regression Methods for Longitudinal Data Analysis (eBook)
400 Seiten
John Wiley & Sons (Verlag)
978-0-470-00966-6 (ISBN)
and efficient methods
This book presents current and effective nonparametric regression
techniques for longitudinal data analysis and systematically
investigates the incorporation of mixed-effects modeling techniques
into various nonparametric regression models. The authors emphasize
modeling ideas and inference methodologies, although some
theoretical results for the justification of the proposed methods
are presented.
With its logical structure and organization, beginning with basic
principles, the text develops the foundation needed to master
advanced principles and applications. Following a brief overview,
data examples from biomedical research studies are presented and
point to the need for nonparametric regression analysis approaches.
Next, the authors review mixed-effects models and nonparametric
regression models, which are the two key building blocks of the
proposed modeling techniques.
The core section of the book consists of four chapters dedicated to
the major nonparametric regression methods: local polynomial,
regression spline, smoothing spline, and penalized spline. The next
two chapters extend these modeling techniques to semiparametric and
time varying coefficient models for longitudinal data analysis. The
final chapter examines discrete longitudinal data modeling and
analysis.
Each chapter concludes with a summary that highlights key points
and also provides bibliographic notes that point to additional
sources for further study. Examples of data analysis from
biomedical research are used to illustrate the methodologies
contained throughout the book. Technical proofs are presented in
separate appendices.
With its focus on solving problems, this is an excellent textbook
for upper-level undergraduate and graduate courses in longitudinal
data analysis. It is also recommended as a reference for
biostatisticians and other theoretical and applied research
statisticians with an interest in longitudinal data analysis. Not
only do readers gain an understanding of the principles of various
nonparametric regression methods, but they also gain a practical
understanding of how to use the methods to tackle real-world
problems.
HULIN WU, PHD, is Professor of Biostatistics in the School of Medicine and Dentistry at the University of Rochester in the Departments of Medicine; Community and Preventative Medicine; and Biostatistics and Computational Biology. His research interests include longi-tudinal data, HIV/AIDS modeling, biomedical informatics, and clinical trials. JIN-TING ZHANG, PHD, is Assistant Professor in the Department of Statistics and Applied Probability at the National University of Singapore. His research interests include nonparametric regression and density estimation, nonparametric mixed-effects modeling, functional data analysis, and longitudinal data analysis, among others.
Preface.
Acronyms.
1. Introduction.
2. Parametric Mixed-Effects Models.
3. Nonparametric Regression Smoothers.
4. Local Polynomial Methods.
5. Regression Spline Methods.
6. Smoothing Splines Methods.
7. Penalized Spline Methods.
8. Semiparametric Models.
9. Time-Varying Coefficient Models.
10. Discrete Longitudinal Data.
References.
Index.
"The authors should be congratulated for their contribution...a
nice addition to the personal collection of any statistician."
(Journal of the American Statistical Association, June 2007)
"...can serve as a textbook for both undergraduate and graduate
students. Also it will help researchers in this area...[because
of its] comprehensive coverage of the materials." (Mathematical
Reviews, 2007b)
"...an excellent survey of many of the nonparametric
regression techniques used in longitudinal studies...highly
recommended." (CHOICE, October 2006)
Erscheint lt. Verlag | 19.6.2006 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Medizinische Fachgebiete | |
Technik | |
Schlagworte | Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • Medical Science • Medizin • nichtparametrische Verfahren • Nonparametric Analysis • Statistics • Statistik |
ISBN-10 | 0-470-00966-7 / 0470009667 |
ISBN-13 | 978-0-470-00966-6 / 9780470009666 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich