Statistical Estimation of Epidemiological Risk (eBook)

(Autor)

eBook Download: PDF
2004 | 1. Auflage
212 Seiten
John Wiley & Sons (Verlag)
978-0-470-09407-5 (ISBN)

Lese- und Medienproben

Statistical Estimation of Epidemiological Risk - Kung-Jong Lui
Systemvoraussetzungen
98,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Statistical Estimation of Epidemiological Risk provides
coverage of the most important epidemiological indices, and
includes recent developments in the field. A useful
reference source for biostatisticians and epidemiologists working
in disease prevention, as the chapters are self-contained and
feature numerous real examples. It has been written at a level
suitable for public health professionals with a limited knowledge
of statistics.

Other key features include:

* Provides comprehensive coverage of the key epidemiological
indices.

* Includes coverage of various sampling methods, and pointers to
where each should be used.

* Includes up-to-date references and recent developments in the
field.

* Features many real examples, emphasising the practical nature
of the book.

* Each chapter is self-contained, allowing the book to be used as
a useful reference source.

* Includes exercises, enabling use as a course text.

KUNG-JONG LUI is a professor in the Department of Mathematics and Statistics at San Diego State University. Since he obtained his Ph.D. in biostatistics from UCLA in 1982, he has published more than 100 papers in peer-reviewed journals, including Biometrics, Statistics in Medicine, Biometrical Journal, Psychometrika, Communications in Statistics: Theory and Methods, Science, Proceedings of National Academy of Sciences, Controlled Clinical Trials, Journal of Official Statistics, IEEE Transactions on Reliability, Environmetrics, Test, Computational Statistics and Data Analysis, American Journal of Epidemiology, American Journal of Public Health, etc. He is a Fellow of the American Statistical Association, a life member of the International Chinese Statistical Association, and a member of the Western North American Region of the International Biometric Society.

About the author.

Preface.

1 Population Proportion or Prevalence.

1.1 Binomial sampling.

1.2 Cluster sampling.

1.3 Inverse sampling.

Exercises.

References.

2 Risk Difference.

2.1 Independent binomial sampling.

2.2 A series of independent binomial sampling procedures.

2.2.1 Summary interval estimators.

2.2.2 Test for the homogeneity of risk difference.

2.3 Independent cluster sampling.

2.4 Paired-sample data.

2.5 Independent negative binomial sampling (inversesampling).

2.6 Independent poisson sampling.

2.7 Stratified poisson sampling.

Exercises.

References.

3 Relative Difference.

3.1 Independent binomial sampling.

3.2 A series of independent binomial sampling procedures.

3.2.1 Asymptotic interval estimators.

3.2.2 Test for the homogeneity of relative difference.

3.3 Independent cluster sampling.

3.4 Paired-sample data.

3.5 Independent inverse sampling.

Exercises.

References.

4 Relative Risk.

4.1 Independent binomial sampling.

4.2 A series of independent binomial sampling procedures.

4.2.1 Asymptotic interval estimators.

4.2.2 Test for the homogeneity of risk ratio.

4.3 Independent cluster sampling.

4.4 Paired-sample data.

4.5 Independent inverse sampling.

4.5.1 Uniformly minimum variance unbiased estimator of relativerisk.

4.5.2 Interval estimators of relative risk.

4.6 Independent poisson sampling.

4.7 Stratified poisson sampling.

Exercises.

References.

5 Odds Ratio.

5.1 Independent binomial sampling.

5.1.1 Asymptotic interval estimators.

5.1.2 Exact confidence interval.

5.2 A series of independent binomial sampling procedures.

5.2.1 Asymptotic interval estimators.

5.2.2 Exact confidence interval.

5.2.3 Test for homogeneity of the odds ratio.

5.3 Independent cluster sampling.

5.4 One-to-one matched sampling.

5.5 Logistic modeling.

5.5.1 Estimation under multinomial or independent binomialsampling.

5.5.2 Estimation in the case of paired-sample data.

5.6 Independent inverse sampling.

5.7 Negative multinomial sampling for paired-sample data.

Exercises.

References.

6 Generalized Odds Ratio.

6.1 Independent multinomial sampling.

6.2 Data with repeated measurements (or under clustersampling).

6.3 Paired-sample data.

6.4 Mixed negative multinomial and multinomial sampling.

Exercises.

References.

7 Attributable Risk.

7.1 Study designs with no confounders.

7.1.1 Cross-sectional sampling.

7.1.2 Case-control studies.

7.2 Study designs with confounders.

7.2.1 Cross-sectional sampling.

7.2.2 Case-control studies.

7.3 Case-control studies with matched pairs.

7.4 Multiple levels of exposure in case-controlstudies.

7.5 Logistic modeling in case-control studies.

7.5.1 Logistic model containing only the exposure variables ofinterest.

7.5.2 Logistic regression model containing both exposure andconfounding variables.

7.6 Case-control studies under inverse sampling.

Exercises.

References.

8 Number Needed to Treat.

8.1 Independent binomial sampling.

8.2 A series of independent binomial sampling procedures.

8.3 Independent cluster sampling.

8.4 Paired-sample data.

Exercises.

References.

Appendix Maximum Likelihood Estimator and Large-SampleTheory.

A.1: The maximum likelihood estimator, Wald's test, thescore test, and the asymptotic likelihood ratio test.

A.2: The delta method and its applications.

References.

Answers to Selected Exercises.

Index.

"...a concise, organized, and well-written text that provides
the derivations of statistical formulas underlying much
epidemiological research and practice." (Journal of the American
Statistical Association, December 2005)

"...presents a considerable amount of recent research, much of
which is the author's own..." (Royal Statistical Society,
Vol.168, No.1, January 2005)

"...systematically organised...an excellent reference..."
(Short Book Review, Vol.24, No.3 December 2004)

"...this book is strongly recommended..." (Statistical
Methods in Medical Research, Vol 14 2005)

Erscheint lt. Verlag 2.4.2004
Reihe/Serie Statistics in Practice
Statistics in Practice
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Technik
Schlagworte biometrics • Biometrie • Biostatistics • Biostatistik • Statistics • Statistik
ISBN-10 0-470-09407-9 / 0470094079
ISBN-13 978-0-470-09407-5 / 9780470094075
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 1,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich