Image-Based Geometric Modeling and Mesh Generation (eBook)
XI, 301 Seiten
Springer Netherland (Verlag)
978-94-007-4255-0 (ISBN)
As a new interdisciplinary research area, 'image-based geometric modeling and mesh generation' integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation.
This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
As a new interdisciplinary research area, "e;image-based geometric modeling and mesh generation"e; integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation.This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
Challenges and Advances in Image-Based Geometric Modeling and Mesh Generation, by Yongjie Zhang.- 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction , by Oline V. Olesen, Rasmus R. Paulsen, Rasmus R. Jensen, Sune H. Keller, Merence Sibomana, Liselotte Højgaard, Bjarne Roed, and Rasmus Larsen.- Flexible Multi-scale Image Alignment Using B-Spline Reparametrization, by Yanmei Zheng, Zhucui Jing, Guoliang Xu.- Shape based Conditional Random Fields for Segmenting Intracranial Aneurysms, by Sajjad Baloch, Erkang Cheng, and Tong Fang.- Tetrahedral Image-To-Mesh Conversion Approaches For Surgery Simulation and Navigation, by Andrey N. Chernikov, Panagiotis A. Foteinos, Yixun Liu, Michel Audette, Andinet Enquobahrie, and Nikos P. Chrisochoides.- Surface Triangular Mesh and Volume Tetrahedral Mesh Generations for Biomolecular Modelling, by Minxin Chen, Bin Tu and Benzhuo Lu.- A Combined Level Set/Mesh Warping Algorithm for Tracking Brain and Cerebrospinal Fluid Evolution in Hydrocephalic Patients, by Jeonghyung Park, Suzanne M. Shontz, and Corina S. Drapaca.- An Optimization-Based Iterative Approach to Tetrahedral Mesh Smoothing , by Zhanheng Gao, Zeyun Yu, and Jun Wang.- High-Quality Multi-Tissue Mesh Generation for Finite Element Analysis, by Panagiotis A. Foteinos and Nikos P. Chrisochoides.- Construction of Models and Meshes of Heterogeneous Material Microstructures from Image Data, by Ottmar Klaas, Mark W. Beall, and Mark S. Shephard.- Quality Improvement of Segmented Hexahedral Meshes Using Geometric Flows, by Juelin Leng, Guoliang Xu, Yongjie Zhang, and Jin Qian.- Patient-Specific Model Generation and Simulation for Pre-Operative Surgical Guidance for Pulmonary Embolism Treatment, by Shankar P. Sastry, Jibum Kim, Suzanne M. Shontz, Brent A. Craven, Frank C. Lynch, Keefe B. Manning, and Thap Panitanarak.- Computational Techniques for Analysis of Shape and Kinematics of Biological Structures, by Jia Wu and John C. Brigham.- Finite Element Modeling of Biomolecular Systems in Ionic Solution, by Benzhuo Lu.
Erscheint lt. Verlag | 3.7.2012 |
---|---|
Reihe/Serie | Lecture Notes in Computational Vision and Biomechanics | Lecture Notes in Computational Vision and Biomechanics |
Zusatzinfo | XI, 301 p. 133 illus., 106 illus. in color. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Medizin / Pharmazie ► Pflege | |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Technik ► Medizintechnik | |
Schlagworte | Biomechanics • finite elements • Geometric Modeling • Image Processing • Mesh Generation |
ISBN-10 | 94-007-4255-X / 940074255X |
ISBN-13 | 978-94-007-4255-0 / 9789400742550 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich