Synthetic Datasets for Statistical Disclosure Control - Jörg Drechsler

Synthetic Datasets for Statistical Disclosure Control (eBook)

Theory and Implementation

(Autor)

eBook Download: PDF
2011 | 2011
XX, 138 Seiten
Springer New York (Verlag)
978-1-4614-0326-5 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with real data problems like nonresponse, skip patterns, or logical constraints.

Each chapter is dedicated to one approach, first describing the general concept followed by a detailed application to a real dataset providing useful guidelines on how to implement the theory in practice.

The discussed multiple imputation approaches include imputation for nonresponse, generating fully synthetic datasets, generating partially synthetic datasets, generating synthetic datasets when the original data is subject to nonresponse, and a two-stage imputation approach that helps to better address the omnipresent trade-off between analytical validity and the risk of disclosure.

The book concludes with a glimpse into the future of synthetic datasets, discussing the potential benefits and possible obstacles of the approach and ways to address the concerns of data users and their understandable discomfort with using data that doesn't consist only of the originally collected values. 

The book is intended for researchers and practitioners alike. It helps the researcher to find the state of the art in synthetic data summarized in one book with full reference to all relevant papers on the topic. But it is also useful for the practitioner at the statistical agency who is considering the synthetic data approach for data dissemination in the future and wants to get familiar with the topic.



Jörg Drechsler is a Research Scientist at the German Institute for Employment Research, Department for Statistical Methods. His main areas of research involve statistical disclosure control and imputation with published papers in JASA, Statistica Sinica, JOS, and Survey Methodology.


The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with real data problems like nonresponse, skip patterns, or logical constraints. Each chapter is dedicated to one approach, first describing the general concept followed by a detailed application to a real dataset providing useful guidelines on how to implement the theory in practice. The discussed multiple imputation approaches include imputation for nonresponse, generating fully synthetic datasets, generating partially synthetic datasets, generating synthetic datasets when the original data is subject to nonresponse, and a two-stage imputation approach that helps to better address the omnipresent trade-off between analytical validity and the risk of disclosure.The book concludes with a glimpse into the future of synthetic datasets, discussing the potential benefits and possible obstacles of the approach and ways to address the concerns of data users and their understandable discomfort with using data that doesn't consist only of the originally collected values. The book is intended for researchers and practitioners alike. It helps the researcher to find the state of the art in synthetic data summarized in one book with full reference to all relevant papers on the topic. But it is also useful for the practitioner at the statistical agency who is considering the synthetic data approach for data dissemination in the future and wants to get familiar with the topic.

Jörg Drechsler is a Research Scientist at the German Institute for Employment Research, Department for Statistical Methods. His main areas of research involve statistical disclosure control and imputation with published papers in JASA, Statistica Sinica, JOS, and Survey Methodology.

Introduction.- Background on Multiply Imputed Synthetic Datasets.- Background on Multiple Imputation.- The IAB Establishment Panel.- Multiple Imputation for Nonresponse.- Fully Synthetic Datasets.- Partially Synthetic Datasets.- Multiple Imputation for Nonresponse and Statistical Disclosure Control.- A Two-Stage Imputation Procedure to Balance the Risk-Utility Trade-Off.- Chances and Obstacles for Multiply Imputed Synthetic Datasets.

Erscheint lt. Verlag 24.6.2011
Reihe/Serie Lecture Notes in Statistics
Lecture Notes in Statistics
Zusatzinfo XX, 138 p. 19 illus.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Medizin / Pharmazie Allgemeines / Lexika
Sozialwissenschaften Politik / Verwaltung
Sozialwissenschaften Soziologie Empirische Sozialforschung
Technik
Wirtschaft
Schlagworte confidentiality • Disclosure • multiple imputation • Synthetic
ISBN-10 1-4614-0326-X / 146140326X
ISBN-13 978-1-4614-0326-5 / 9781461403265
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich