Planar Lipid Bilayers (BLM's) and Their Applications -  H.T. Tien,  A. Ottova-Leitmannova

Planar Lipid Bilayers (BLM's) and Their Applications (eBook)

eBook Download: PDF | EPUB
2003 | 1. Auflage
1044 Seiten
Elsevier Science (Verlag)
978-0-08-053903-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
335,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"The lipid bilayer is the most basic structural element of cell membranes. A wide range of topics are covered in this volume, from the origin of the lipid bilayer concept, to current applications and experimental techniques. Each chapter in this volume is self-contained and describes a group's research, providing detailed methodology and key references useful for researchers. Lipid bilayer research is of great interest to many because of it's interdisciplinary nature.

?Provides an overview of decades of research on the lipid bilayer
?38 contributed chapters, by leading scientists, cover a wide range of topics in one authoritative volume
?Book coincides with 40th anniversary of BLM"
The lipid bilayer is the most basic structural element of cell membranes. A wide range of topics are covered in this volume, from the origin of the lipid bilayer concept, to current applications and experimental techniques. Each chapter in this volume is self-contained and describes a group's research, providing detailed methodology and key references useful for researchers. Lipid bilayer research is of great interest to many because of it's interdisciplinary nature.* Provides an overview of decades of research on the lipid bilayer* 38 contributed chapters, by leading scientists, cover a wide range of topics in one authoritative volume* Book coincides with 40th anniversary of BLM

Front Cover 1
Planar Lipid Bilayers (Blms) and Their Applications 4
Copyright Page 5
Contents 8
Preface 6
Part I: Lipid bilayer principle of biomembranes 12
Chapter 1. The lipid bilayer concept: Experimental realization and current applications 12
Chapter 2. Dielectric and Electrical Properties of Lipid Bilayers in Relation to their Structure 86
Chapter 3. Boundary poterrtials of bilayer lipid membranes: methods and interpretations 120
Chapter 4. Effect of anisotropic properties of membrane constituents on stable shapes of membrane bilayer structure 154
Chapter 5. Elastic properties of BLMs and pore formation 184
Chapter 6. Mechanoelectric properties of BLMs 216
Chapter 7. Chain-ordering phase transition in bilayer: kinetic mechanism and its physiochemical and physiological implications 250
Chapter 8. Coupling of chain melting and bilayer structure: domains, rafts, elasticity and fusion 280
Chapter 9. Water transport 306
Chapter 10. Membrane-macromolecule interactions and their structural consequences 326
Part II: Ion Selectivity, Specificity, and Membrane Reconstitution 358
Chapter 11. Investigation of substrate-specific porin channels in BLMs 358
Chapter 12. Planar lipid bilayer analyses of bacterial porins the role of structure in defining function
Chapter 13. Reconstitution in planar lipid bilayers of ion channels synthesized in ovo and in vitro 402
Chapter 14. Multi-channel and single-channel investigation of protein and peptide incorporation into BLMs 424
Chapter 15. Structure and function of plant membrane ion channels reconstituted in planar lipid bilayers 460
Chapter 16. Reconstituting SNARE proteins into BLMs 490
Chapter 17. Mitochondrial ion channels, their isolation and study in planar BLMs 500
Chapter 18. The use of liposomes to detect channel formation mediated by secreted bacterial proteins 528
Chapter 19. The quest for ion channel memory using a planar BLM 550
Chapter 20. Symmetric and asymmetric planar lipid bilayers of various lipid composition: a tool for studying mechanisms and lipid specificity of peptide/membrane interactions 580
Chapter 21. Insights into ion channels from peptides in planar lipid bilayers 600
Chapter 22. Permeation property and intramembrane environments of synthetic phytanyl-chained glycolipid membranes 616
Chapter 23. Modulation of planar bilayer permeability by electric fields and exogenous peptides 644
Chapter 24. Gravitational impact on ion channels incorporated into planar lipid bilayers 680
Chapter 25. Advantages and disadvantages of patch-clamping versus using BLM 710
Chapter 26. Using bilayer lipid membranes to investigate the pharmacology of intracellular calcium channels 734
Part III: Planar BLMs in Biotechnology 746
Chapter 27. Systems aspects of supported membrane biosensors 746
Chapter 28. Biosensors from interactions of DNA with lipid membranes 778
Chapter 29. Structure and electrochemistry of fullerene lipid-hybrid and composite materials 800
Chapter 30. Analytical applications ofbilayer lipid membrane systems 818
Chapter 31. Transmembrane voltage sensor 858
Chapter 32. Domains, cushioning and patterning of bilayers by surface interactions with solid substrates and their sensing properties 898
Chapter 33. Supported planar lipid bilayers (s-BLMs, Sb-BLMs, etc.) 928
Part IV: Light-induced phenomena and spectroscopy 974
Chapter 34. Photoinduced charge separation in lipid bilayers 974
Chapter 35. Photosynthetic pigment-protein complexes in planar lipid membranes 992
Chapter 36. Biochemical applications of solid supported membranes on gold surfaces: quartz crystal microbalance and impedance analysis 1002
Chapter 37. Simultaneous measurement of spectroscopic and physiological signals from a planar bilayer system 1028
Subject Index 1042

Chapter 1

The lipid bilayer concept: Experimental realization and current applications


H.T. Tien; A. Ottova    Physiology Department, Biomedical and Physical Sciences Building Michigan State University, East Lansing, MI 48824 (USA)

Publisher Summary


This chapter discusses the experimental realization and current applications of the lipid bilayer concept. The lipid bilayer comprises the fundamental structure of all biomembranes. The recognition of the lipid bilayer as a model for biomembranes dates back to the work of Gorter and Grendel published in 1925. However, the origin of the lipid bilayer concept is much older, and is traceable to black soap bubbles more than three centuries ago. The early observation of “black holes” in soap films had a profound influence on the development of the lipid bilayer concept of biomembranes and its subsequent experimental realization in planar lipid bilayers and spherical liposomes. The lipid bilayer principle of cell or biological membranes may be summarily stated that all living organisms are made of cells, and every cell is enclosed by a plasma membrane, the indispensable component of which is a lipid bilayer. The most pivotal function of the lipid bilayer membrane is that it separates the environment by a permeability barricade that allows the cell to preserve its identity, take up nutrients and to remove waste. This 5 nm thick liquid-crystallline lipid bilayer serves not just as a physical barrier but also as a conduit for transposrt, a reactor for energy conversion, a transducer for signal processing, a bipolar electrode for redox reactions or as a site for molecular recognition.

1 INTRODUCTION


It may sound far fetched but it is nonetheless true that the concept of the lipid bilayer of cell or biological membranes began with the observations of R. Hooke of Hooke's law fame, who in 1672 coined the word ‘cell’ to describe the array of a cork slice under a microscope he constructed. Using the microscope, Hooke discovered ‘black holes’ in soap bubbles and films. Years later, Isaac Newton estimated the blackest soap film to be about 3/8 × 10−6 inch thick. Modern measurements give thickness between 5 and 9 nm, depending on the soap solution used.

Question: How does one embark from black soap films to black lipid membranes (BLMs) as models of biological membranes? Here we must go back in time to the early 1960s. A good starting point, perhaps, is the conference held in New York City.

1.1 Symposium on the Plasma Membrane


In December 1961, at the meeting sponsored by the American and New York Heart Association, when a group of unknown researchers reported the reconstitution of a bimolecular lipid membrane in vitro, the account was met with skepticism. Those present included some of the foremost proponents of the lipid bilayer concept, such as Danielli, Davson, Stoeckenius, Adrian, Mauro, Finean, and many others [1]. The research group led by Donald Rudin began the report with a description of mundane soap bubbles, followed by ‘black holes’ in soap films, etc. ending with an invisible ‘black’ lipid membrane, made from extracts of cow's brains. The reconstituted structure (60-90 Å thick) was created just like a cell membrane separating two aqueous solutions. The speaker then said:

“… upon adding one, as yet unidentified, heat-stable compound… from fermented egg white.… …to one side of the bathing solutions.… lowers the resistance… by 5 orders of magnitude to a new steady state.… which changes with applied potential… Recovery is prompt… the phenomenon is indistinguishable… from the excitable alga Valonia…, and similar to the frog nerve action potential…”

As one member of the amused audience remarked, “… the report sounded like… cooking in the kitchen, rather than a scientific experiment!” That was in 1961, and the first report was published a year later [2]. In reaction to that report, Bangham, the originator of liposomes [3], wrote in a 1995 article entitled ‘Surrogate cells or Trojan horses’:

“… a preprint of a paper was lent to me by Richard Keynes, then Head of the Department of Physiology (Cambridge University), and my boss. This paper was a bombshell… They (Mueller, Rudin, Tien and Wescott) described methods for preparing a membrane…. not too dissimilar to that of a node of Ranvier… The physiologists went mad over the model, referred to as a ‘BLM’, an acronym for Bilayer or by some for Black Lipid Membrane. They were as irresistible to play with as soap bubbles.”

Indeed, the Rudin group, then working on the 9th floor of the Eastern Pennsylvania Psychiatric Institute (now defunct) in Philadelphia, Pa., was playing with soap bubbles with the ‘equipment’ purchased from the local toyshop [4]. While nothing unusual for the researchers at work, it must have been a curious and mysterious sight for the occasional visitors who happened to pass through the corridor of laboratories there! However, playing with soap bubbles scientifically has a long, respectable antiquity, as already mentioned in the introductory paragraph.

1.2 Origins of the Lipid Bilayer Concept


Nowadays it is taken for granted that the lipid bilayer comprises the fundamental structure of all biomembranes. The recognition of the lipid bilayer as a model for biomembranes dates back to the work of Gorter and Grendel published in 1925 [5]. However, the origin of the lipid bilayer concept is much older, and is traceable to black soap bubbles more than three centuries ago!

The early observation of ‘black holes’ in soap films by Hooke and Newton had a profound influence on the development of the lipid bilayer concept of biomembranes and its subsequent experimental realization in planar lipid bilayers and spherical liposomes. In this connection, there has been much discussion lately on self-assemblies of molecules, meaning the aggregation of molecular moieties into thermodynamically stable and more ordered structures. Without question, the inspiration for these exciting developments comes from the biological world, where, for example, Nature uses self-assembly, as a strategy to create complex, functional structures, such as viral protein coatings, and DNA, besides the above-mentioned lipid bilayer of cell membranes. Many researchers have reported self-assembling systems such as Langmuir-Blodgett monolayers and multi-layers [6]. A broad list of man-made, self-assembling systems involving amphiphilic molecules is given in Table 1.

Table 1

Experimental self-assembling interfacial amphiphilic systems

System Interfaces
1. Soap films air | soap solution | air
2. Monolayers air | molecular layer | water
3. Micelles (water-in-oil) water | monolayer | oil
Micelles (oil-in-water) oil | monolayer | water
4. Multilayers air | molecular layers | water
5. Bilayers (BLMs and Liposomes) water | BLM | water
6. Nuclepore supported BLMs water | BLM | water
7. Gold supported Monolayers air | molecular layers | gold
8. Metal supported BLMs (s-BLMs) water | lipid bilayer | metal
9. Salt-bridge supported BLMs (sb-BLMs) water | lipid bilayer | hydrogel
10. Tethered BLMs (t-BLMs) gold | SH-BLM | water

Where the vertical line | denotes an interface.

1.3 Early experimental evidence for the lipid bilayer


Prior to the seminal work of Gorter and Grendel on the red blood cells (RBC), several pertinent questions had been raised:

 Was there a plasma membrane (Pfeffer, 1877)?

 What was the nature of the plasma membrane (Overton, 1890)?

 What is the meaning of membrane potential (Bernstein, 1900)?

 How thick is the plasma membrane (Fricke, 1925)?

 What is the molecular organization of lipids in the plasma membrane (Gorter and Grendel, 1925)?

Before answering the last posed question, let us digress for the moment to a different topic, namely, interfacial and colloid chemistry. It is no exaggeration that modern investigation of interfacial and colloid chemistry began in the kitchen sink! Over a span of 4 years (1891-1894), Agnes Pockels (a house wife working over the kitchen sink) reported in Nature (see Ref. [7]) how surface films could be enclosed by means of physical barriers to about 20 A2/molecule. To be more accurate historically, the first landmark is generally bestowed to Benjamin Franklin, who in 1774 demonstrated that a teaspoonful of oil (olive ?) is able to calm a half-acre (~ 2000 m2) surface of a pond. Pockels' observation was followed...

PDFPDF (Adobe DRM)
Größe: 134,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 18,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99