Biochemistry of Smooth Muscle Contraction -

Biochemistry of Smooth Muscle Contraction (eBook)

Michael Barany (Herausgeber)

eBook Download: PDF
1996 | 1. Auflage
418 Seiten
Elsevier Science (Verlag)
978-0-08-052789-5 (ISBN)
Systemvoraussetzungen
140,85 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This valuable resource provides a systematic account of the biochemistry of smooth muscle contraction. As a comprehensive guide to this rapidly growing area of research, it covers the structure and characteristic properties of contractile and regulatory proteins, with special emphasis on their predicted function in the live muscle. Also included in this book are intermediate filament proteins, and desmin and vimentin, whose function in smooth muscle is unknown, and several enzymes involved in the phosphorylation-dephosphorylation of contractile and other proteins.
This valuable resource provides a systematic account of the biochemistry of smooth muscle contraction. As a comprehensive guide to this rapidly growing area of research, it covers the structure and characteristic properties of contractile and regulatory proteins, with special emphasis on their predicted function in the live muscle. Also included in this book are intermediate filament proteins, and desmin and vimentin, whose function in smooth muscle is unknown; and several enzymes involved in the phosphorylation-dephosphorylation of contractile and other proteins.

Front Cover 1
Biochemistry of Smooth Muscle Contraction 4
Copyright Page 5
Contents 8
Contributors 18
Introductory Note 22
Foreword 24
Preface 26
PART 1: CONTRACTILE PROTEINS 28
Chapter 1. Myosin Structure and Function 30
I. Introduction 30
II. Methods 31
III. Analysis of the Primary Sequence of Smooth Muscle Myosin Heavy Chain 33
IV. Alternative Splicing of Smooth Muscle Heavy Chain Pre-mRNA 38
V. Kinetics of Regulation 43
VI. Perspectives 45
References 45
Chapter 2. Myosin Light Chains 48
I. Introduction 48
II. Methods 48
III. Regulatory Light Chain 50
IV. Essential Light Chain 56
V. Interaction between Light and Heavy Chains 59
VI. Binding of Divalent Cations by Light Chains 59
VII. Perspectives 60
References 60
Chapter 3. Myosin Regulation and Assembly 64
I. Introduction 64
II. Structure of the Light Chain Binding Region 64
III. Control of Assembly by Light Chain Phosphorylation 65
IV. Phosphorylation-Dependent Control of Myosin's Motor Properties 67
V. Filament Structure 69
References 72
Chapter 4. Actin and the Structure of Smooth Muscle Thin Filaments 74
I. Introduction 74
II. Smooth Muscle Actin 74
III. Thin Filament Structure 79
IV. Perspectives 85
References 85
PART 2: THIN FILAMENT AND CALCIUM-BINDING PROTEINS 88
Chapter 5. Tropomyosin 90
I. Introduction 90
II. Tropomyosin Levels in Smooth Muscles, Purification, and General Properties 91
III. Isoform Diversity of Skeletal and Smooth Muscle Tropomyosins 91
IV. Tropomyosin Genes, Origin of Isoform Diversity, and Amino Acid Sequences 93
V. Amino Acid Sequence and Coiled-Coil Structure 94
VI. Actin Binding and Head-to-Tail Polymerization 97
VII. Perspectives 100
References 100
Chapter 6. Caldesmon 104
I. Introduction 104
II. Preparation 104
III. Structure of Caldesmon in Solution 105
IV. Caldesmon as a Component of the Thin Filaments 106
V. Caldesmon–Actin–Tropomyosin Interactions 106
VI. Caldesmon Inhibition of Actomyosin ATPase Activity 110
VII. Tropomyosin-Dependent Inhibition of Actomyosin ATPase by Caldesmon 111
VIII. Ca2+ Control of Caldesmon Inhibition 112
IX. Caldesmon–Myosin Interaction 113
X. The Role of Caldesmon in Regulating Smooth Muscle Contractility 114
XI. Perspectives 115
References 115
Chapter 7. Calponin 118
I. Introduction 118
II. Purification and Physicochemical Properties 118
III. Isoform Diversity 119
IV. Primary Structure and Genetic Variants 120
V. In Vitro Activity 123
VI. Molecular Domain Organization and Binding Motifs 126
VII. Tissue Specificity and Localization 127
VIII. Perspectives 128
References 128
Chapter 8. Calcium Binding Proteins 132
I. Introduction 132
II. Isolation of Calcium Binding Proteins 132
III. Amino Acid Composition of Smooth Muscle Calcium Binding Proteins 133
IV. Calcium Binding Properties of 12-kDa Calcium Binding Protein 133
V. Purification and Characterization of 67-kDa Calcimedin 135
VI. Calmodulin 136
VII. Isolation and Characterizaton of Caltropin 137
VIII. Conclusion 141
References 142
PART 3: ENZYMES OF PROTEIN PHOSPHORYLATION- DEPHOSPHORYLATION 144
Chapter 9. Myosin Light Chain Kinase 146
I. Introduction 146
II. Myosin Light Chain Kinase Activity in Vivo 146
III. Purification and Assay 149
IV. Biochemical and Molecular Properties of Myosin Light Chain Kinase 150
V. Summary and Perspectives 155
References 155
Chapter 10. Myosin Light Chain Phosphatase 158
I. Introduction 158
II. Smooth Muscle Myosin Phosphatase 160
III. Phosphatase Inhibitors 166
IV. Summary 167
References 167
Chapter 11. Calcium/Calmodulin-Dependent Protein Kinase II 170
I. Introduction 170
II. Structural Properties of Calmodulin- Kinase II 170
III. Regulation of Calmodulin-Kinase II Activity 173
IV. Activation and Autophosphorylation of Calmodulin-Kinase II in Situ 175
V. Calmodulin-Kinase II Isozymes in Smooth Muscle 176
VI. Potential Functions of Calmodulin-Kinase II in Smooth Muscle 177
VII. Summary 179
References 179
Chapter 12. Protein Kinase C 182
I. Introduction 182
II. Properties of Protein Kinase C Isozymes 182
III. Expression of Protein Kinase C Isozymes in Smooth Muscle 185
IV. Role of Protein Kinase C in Regulating Smooth Muscle Contraction 187
V. Summary 190
References 190
Chapter 13. Mitogen-Activated Protein Kinase 194
I. Introduction 194
II. Measurement of Mitogen-Activated Protein Kinase Activity in Smooth Muscle 195
III. Mitogen-Activated Protein Kinase Cascade 196
IV. Evidence for Mitogen-Activated Protein Kinase in the Contractile Phenotype of Smooth Muscle 198
V. Comparison of Mitogen-Activated Protein Kinase Activation in Contractile versus Proliferative Smooth Muscle 202
VI. Summary 202
References 203
PART 4: MOTILE SYSTEMS 206
Chapter 14. In Vitro Motility Assays with Smooth Muscle Myosin 208
I. Introduction 208
II. Description of Equipment 209
III. Assay Procedure 210
IV. Quantitation and Presentation of Results 213
V. Effects of Phosphorylation 214
VI. Mechanical Experiments 215
VII. Effect of Light Chain Removal 216
VIII. Summary and Perspectives 217
References 217
Chapter 15. Permeabilized Smooth Muscle 218
I. Introduction 218
II. Permeabilization Protocols 218
III. Probing the Phosphorylation Theory in Triton Skinned Smooth Muscle 220
IV. Kinetic Investigations in Permeabilized Smooth Muscle Using Caged Compounds 222
V. Modulation of Ca2+ Sensitivity of Contraction 222
VI. Studies on the Ca2+ Release from Intracellular Stores in Permeabilized Smooth Muscle 223
VII. Conclusions 224
References 224
PART 5: CALCIUM MOVEMENTS 228
Chapter 16. Calcium Channels and Potassium Channels 230
I. Introduction 230
II. Properties of Calcium and Potassium Channels 234
III. Pharmacology of Calcium and Potassium Channels in Smooth Muscle 237
IV. Physiology of Calcium and Potassium Channels in Smooth Muscle 239
V. Conclusions 244
References 244
Chapter 17. Molecular Biology and Expression of Smooth Muscle L-Type Calcium Channels 248
I. Introduction 248
II. Subunit Structure and Genes of the High Voltage-Activated Calcium Channel 248
III. The Smooth Muscle L-Type Calcium Channel a1 Subunit 250
IV. Functional Interaction of the Calcium Channel Subunits 252
V. Hormonal Regulation of the Smooth Muscle Calcium Channel 252
References 253
Chapter 18. Electromechanical and Pharmacomechanical Coupling 254
I. Introduction 254
II. Historical Background 254
III. Electromechanical Coupling 256
IV. Pharmacomechanical Coupling 257
V. Regulation of Contractile Force 262
VI. Relative Importance of the Electromechanical and Pharmacomechanical Contractile Mechanisms 263
VII. Summary and Perspectives 263
References 264
Chapter 19. Calcium Pumps 268
I. Introduction 268
II. Role of Ca2+ Pumps in the Regulation of Cytosolic Ca2+ 269
III. General Properties of Ca2+ Pumps and Their Regulators 269
IV. Expression of Ca2+ Pumps and Phospholamban in Smooth Muscle Cells 272
V. Regulation of the Serca-Type Ca2+ Pumps in Smooth Muscle Cells 274
VI. Regulation of the PMCA-Type Ca2+ Pumps in Smooth Muscle Cells 275
VII. Ca2+ Pumps in Pathological Conditions 278
References 278
PART 6: SIGNAL TRANSDUCTION 282
Chapter 20. The Nitric Oxide-Cyclic GMP Signaling System 284
I. Mechanisms of Nitric Oxide Signaling in Vascular Cells 284
II. Mechanism of cGMP-Evoked Relaxation of Vascular Smooth Muscle 286
III. Role of cGMP-Dependent Protein Kinase in the Nitric Oxide-cGMP Signaling Pathways in Smooth Muscle Cells 289
IV. Activation of cGMP-Dependent Protein Kinase by cAMP in Smooth Muscle 291
V. Protein Substrates for cGMP-Dependent Protein Kinase 292
VI. Role of Nitric Oxide and cGMP in Vascular Smooth Muscle Cell Proliferation and Differentiation 293
VII. Summary 294
References 294
Chapter 21. Inositol 1,4,5-Trisphosphate Production 296
I. Introduction 296
II. Analysis of Inositol Phosphates and Phospholipids 296
III. Enzymes Involved in the Turnover of Phosphate in Phosphoinositides 298
IV. Phosphoinositide-Specific Phospholipase C 300
V. Inositol 1,4,5-Trisphosphate and Contraction 304
VI. Relationship between Smooth Muscle Stimulation, Inositol 1,4,5-Trisphosphate Release, and Rise in Intracellular Ca 2+ 305
VII. Inositol Tetrakisphosphate 305
VIII. Diacylglycerol 306
IX. Summary and Perspectives 307
References 307
Chapter 22. Protein Tyrosine Phosphorylation and Regulation of Intracellular Calcium in Smooth Muscle Cells 310
I. Introduction 310
II. Cellular Functions of Protein Tyrosine Phosphorylation 310
III. Protein Tryrosine Phosphorylation and [Ca2+]i in Smooth Muscle 312
IV. Summary, Working Model, and Future Directions 318
References 319
Chapter 23. Cyclic ADP-Ribose and Calcium Signaling 322
I. Introduction 322
II. Identification of Cyclic ADP-Ribose as a Ca 2+ Mobilizing Agent 322
III. Cyclic ADP-Ribose Metabolism 324
IV. Mechanism of Cyclic ADP-Ribose-Induced Ca 2+ Release 326
V. Cyclic ADP-Ribose-Mediated Ca 2+ Release in Mammalian Cells 327
References 331
Chapter 24. Enzyme Translocations during Smooth Muscle Activation 334
I. Introduction 334
II. Methods of Study 335
III. Evidence for Translocation of Enzymes during Smooth Muscle Activation 338
IV. Mechanisms of Translocation 341
V. Kinase Cascades in Smooth Muscle Contraction 342
VI. Summary and Perspectives 343
References 343
PART 7: CONTRACTION AND RELAXATION 346
Chapter 25. Protein Phosphorylation during Contraction and Relaxation 348
I. Introduction 348
II. Quantification of Protein Phosphorylation 348
III. LC20 Phosphorylation 349
IV. LC20 Dephosphorylation 354
V. Exchange of the Covalently Bound Phosphate of LC20 358
VI. Caldesmon Phosphorylation 359
VII. Desmin Phosphorylation 359
VIII. Phosphorylation of the 28-kDa Protein 360
IX. Absence of Calponin Phosphorylation during Smooth Muscle Contraction 361
X. Protein Phosphorylation during the Resting–Contraction–Relaxation–Contraction Cycle 362
XI. Protein Phosphorylation in Phorbol Ester- Treated Smooth Muscle 362
XII. Summary and Perspectives 363
References 364
Chapter 26. Regulation of Cross-bridge Cycling in Smooth Muscle 368
I. Introduction 368
II. Criteria for Identification of Physiological Cross-bridge Regulatory Mechanisms 368
III. Empirical Observations in Smooth Muscle 368
IV. Potential Sites of Regulation in the Cross- bridge Cycle 371
V. Proposed Regulatory Mechanisms 374
VI. Conclusions and Future Directions 377
References 378
Chapter 27. Calcium Sensitivity of Contraction 382
I. Ca 2+ Dependence of Contraction in Smooth Muscle 382
II. Mechanisms of Ca 2+ Sensitization and Desensitization 385
III. Summary and Perspectives 390
References 391
Chapter 28. Pharmacological Regulation of Smooth Muscle by Ion Channels, Kinases, and Cyclic Nucleotides 394
I. Introduction 394
II. Ion Flux Regulation: General Considerations 394
III. Modification of Key Kinases and Phosphorylation 397
IV. Cyclic Nucleotides and Relaxation 399
References 401
PART 8 : ENERGETICS 404
Chapter 29. Energetics of Smooth Muscle Contraction 406
I. Introduction 406
II. Cellular Energy Stores and Metabolic Turnover Rate 406
III. Response to Hypoxia and Metabolic Inhibition 408
IV. Energetics of the Contractile System 410
V. Kinetics of the Cross-bridge Interaction 413
VI. Perspectives 417
References 417
Chapter 30. 31P Nuclear Magnetic Resonance Spectroscopy 420
I. Introduction 420
II. Technical Requirements of Smooth Muscle Spectroscopy 420
III. Spectral Peak Identification 421
IV. Ion-Dependent Chemical Shift 424
V. Creatine Kinase Equilibrium and Kinetics 426
VI. Metabolic Control of Force Generation 428
VII. Application of Foreign Substances to Smooth Muscle 429
VIII. Conclusions 431
References 431
List of Abbreviations 442
Index 432
Errata 446
Color Plate Section 447

Contributors


Numbers in parentheses indicate the pages on which the authors' contributions begin.

S. Thomas Abraham(143)     Sigfried Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822

Leonard P. Adam(167)     Boston Biomedical Research Institute, Boston, Massachusetts 02114

Robert S. Adelstein(3)     National Health Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Kate Bárány(21 269 321)     Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612

Michael Bárány(21 47 269 321)     Department of Biochemistry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612

Nancy J. Boerth(257)     Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Joseph E. Brayden(203)     Department of Pharmacology, Ion Channel Group, Medical Research Facility, College of Medicine, University of Vermont, Colchester, Vermont 05446

Trudy L. Cornwell(257)     Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Roger W. Craig(47)     Department of Cellular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Joseph Di Salvo(283)     Department of Medicine and Molecular Physiology, School of Medicine, University of Minnesota at Duluth, Duluth, Minnesota 55812

Patrick F. Dillon(393)     Departments of Physiology and Radiology, Michigan State University, East Lansing, Michigan 48824

Ferenc Erdödi(131)     Department of Medical Chemistry, University of Debrecen, School of Medicine, H-4026 Debrecen, Hungary

Antony Galione(295)     Department of Pharmacology, Oxford University, Oxford OX1 3QT, United Kingdom

Zhong-Hua Gao(119)     Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Mario Gimona(91)     Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Robert W. Grange(355)     Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

David J. Hartshorne(131)     Muscle Biology Group, Department of Animal Sciences, University of Arizona, Tucson, Arizona 85721

Per Hellstrand(379)     Department of Physiology and Biophysics, University of Lund, S-223 62 Lund, Sweden

Franz Hofmann(221)     Institut für Pharmakologie und Toxikologie der Technischen Universität München, D 80802 München, Germany

Pia A.J. Huber(77)     Department of Cardiac Medicine, National Heart and Lung Institute, London SW3 6LY, United Kingdom

Masaaki Ito(131)     1st Deparment Internal Medicine, Mie University School of Medicine, Tsu, Mie 514, Japan

Kristine E. Kamm(119 355)     Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Nihal Kaplan(283)     Department of Medicine and Molecular Physiology, School of Medicine, University of Minnesota at Duluth, Duluth, Minnesota 55812

Cyril M. Kay(105)     MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Raouf A. Khalil(307)     Cardiovascular Division, Department of Medicine, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215

Norbert Klugbauer(221)     Institut fur Pharmakologie und Toxikologie der Technischen Universität München, D-80802 München, Germany

Harm J. Knot(203)     Department of Pharmacology, Ion Channel Group, Medical Research Facility, College of Medicine, University of Vermont, Colchester, Vermont 05446

Padmini Komalavilas(257)     Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Douglas S. Krafte(367)     Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877

Joanna K. Krueger(119)     Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

William Lehman(47)     Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118

Thomas M. Lincoln(257)     Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Lee Ann MacMillan-Crow(257)     Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Rajam S. Mani(105)     MRC Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Steven B. Marston(77)     Department of Cardiac Medicine, National Heart and Lung Institute, London SW3 6LY, United Kingdom

Kathleen G. Morgan(307)     Boston Biomedical Research Institute, and Cardiovascular Division, Department of Medicine, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215

Richard A. Murphy(341)     Department of Molecular Physiology and Biological Physics, University of Virginia Health Science Center, Charlottesville, Virginia 22908

Mark T. Nelson(203)     Department of Pharmacology, Ion Channel Group, Medical Research Facility, College of Medicine, University of Vermont, Colchester, Vermont 05466

Roanna Padre(119)     Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Gabrielle Pfitzer(191)     Institut für Physiologie, Medizinische Fakultät, Humboldt Universität, D-10115 Berlin, Germany

Luc Raeymaekers(241)     Laboratorium Voor Fysiologie, K. U. Leuven, B 3000 Leuven, Belgium

Christopher M. Rembold(227)     Department of Internal Medicine and Physiology, University of Virginia Health Science Center, Charlottesville, Virginia 22908

Charles M. Schworer(143)     Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822

James R. Sellers(3 181)     National Health Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Lori A. Semenchuk(283)     Department of Medicine and Molecular Physiology, School of Medicine, University of Minnesota at Duluth, Duluth, Minnesota 55812

Jaswinder Sethi(295)     Department of Pharmacology, Oxford University, Oxford OX1 3QT, United Kingdom

Paul J. Silver(367)     Department of Vascular and Biochemical Pharmacology, Sterling Winthrop Incorporated, College ville, Pennsylvania 19426

Harold A. Singer(143...

Erscheint lt. Verlag 4.1.1996
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Biologie Zoologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-08-052789-2 / 0080527892
ISBN-13 978-0-08-052789-5 / 9780080527895
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99