Robotics in Genitourinary Surgery (eBook)

eBook Download: PDF
2011 | 2011
XIX, 685 Seiten
Springer London (Verlag)
978-1-84882-114-9 (ISBN)

Lese- und Medienproben

Robotics in Genitourinary Surgery -
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Robotics in Genito-Urinary Surgery fills the void of information on robotic urological surgery; a topic that is currently highly in demand and continuously increasing. This book provides detailed information on the utility of robotic urological surgery and how to use it most effectively.

 

Robotics in Genito-Urinary Surgery comprehensively covers specialist areas such as female urology, pelvic floor reconstructions and holds a strong focus on pediatric urology. It also presents the main operative techniques through the use of high quality images and drawings.

 

Compiled by expert authors from the USA, Europe and Asia, this book provides an international perspective on the basic knowledge and clinical management required for the optimal care of patients.



Ashok K. Hemal, MS, DipNB, MCh, MAMS, FICS, FACS, FAMS, FRCS (Glasg): Professor, Department of Urology, Director, Robotics and Minimally Invasive Surgery, Wake Forest University School of Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC. Dr Hemal has also contributed to several robotic programs worldwide.

Dr. Mani Menon, MD: the Director of Vattikuti Urology Institute, Chairman of Urology at the Henry Ford Health System in Detroit is a well known figure in urologic academia for many years. He is widely published and renowned for his impeccable literary style. As the pioneer of robotic radical prostatectomy - did the first major study to compare open and robotic prostatectomies, published in the BJU Ints in 2003 - he has performed the largest number of such surgeries and has published his impressive results in the Journal of Urology and BJU Intl. He has also organized international workshops on robotic urology and made many presentations on this topic.


Robotics in Genitourinary Surgery fills the void of information on robotic urological surgery; a topic that is currently highly in demand and continuously increasing. This book provides detailed information on the utility of robotic urological surgery and how to use it most effectively. Robotics in Genitourinary Surgery comprehensively covers specialist areas such as female urology, pelvic floor reconstructions and holds a strong focus on pediatric urology. It also presents the main operative techniques through the use of high quality images and drawings. Compiled by expert authors from the USA, Europe and Asia, this book provides an international perspective on the basic knowledge and clinical management required for the optimal care of patients.

Ashok K. Hemal, MS, DipNB, MCh, MAMS, FICS, FACS, FAMS, FRCS (Glasg): Professor, Department of Urology, Director, Robotics and Minimally Invasive Surgery, Wake Forest University School of Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC. Dr Hemal has also contributed to several robotic programs worldwide.Dr. Mani Menon, MD: the Director of Vattikuti Urology Institute, Chairman of Urology at the Henry Ford Health System in Detroit is a well known figure in urologic academia for many years. He is widely published and renowned for his impeccable literary style. As the pioneer of robotic radical prostatectomy - did the first major study to compare open and robotic prostatectomies, published in the BJU Ints in 2003 - he has performed the largest number of such surgeries and has published his impressive results in the Journal of Urology and BJU Intl. He has also organized international workshops on robotic urology and made many presentations on this topic.

Preface 5
Contents 7
Contributors 12
Part I History, Basics, and Development of Program 19
1 The History of Robotic Surgery 20
1.1 Introduction 20
1.2 History of Robotics 21
1.3 Western Robotics 21
1.4 Eastern Robotics 24
1.5 Engineering Modern Robots 26
1.5.1 From Greek Myths to Reality 26
1.5.2 World's Fair Robots 28
1.5.3 The Legacy of Raymond C. Goertz 29
1.5.4 The University of Robotics 30
1.5.5 Out of the Laboratory 31
1.6 Surgical Robotics 32
1.6.1 Complete Robotic Surgery 33
1.6.2 Microrobotic Surgery 35
1.6.3 Autonomous Microrobotic Surgery 35
1.6.4 Nano-robotic Surgery 35
1.7 HumanRobot Interface (Cyborgs) 35
1.8 Future Considerations (Nanotechnology) 37
1.9 Conclusions 38
References 39
2 Robotic Instrumentation and Operating Room Setup 42
2.1 Robotic Instrumentation 42
2.1.1 da Vinci® Surgical System 42
2.1.1.1 Surgeon Console 42
2.1.1.2 Patient Cart 45
2.1.1.3 Vision Cart 46
2.1.1.4 EndoWrist® Instruments 48
2.2 Surgical Team 48
2.3 Operating Room Setup 49
2.4 Robotic-Assisted Surgery 49
2.4.1 Patient Cart Docking 51
2.4.2 System Shutdown 52
2.5 Conclusions 52
References 52
3 Port Placement in Robotic Urologic Surgery 54
3.1 Introduction 54
3.2 General Principles of Port Placement 54
3.2.1 Establishing Pneumoperitoneum and Primary Access 55
3.2.2 Types of Trocars Used for Robotic Surgery Port Placement 57
3.2.3 Port Placement Troubleshooting 57
3.3 Robotic-Assisted Laparoscopic Radical Prostatectomy (RALP) 58
3.3.1 Port Site Closure 59
3.4 Robotic-Assisted Radical Cystectomy (RARC) and Urinary Diversion 60
3.5 Robotic-Assisted Renal Procedures 61
3.5.1 Robotic-Assisted Radical Nephrectomy (RARN) and Partial Nephrectomy 61
3.5.2 Robotic-Assisted Pyeloplasty and Pyelolithotomy 64
3.6 Robotic-Assisted Laparoscopic Sacrocolpopexy (RALSC) 65
References 66
4 Achieving Efficiency in the Operating Room: Step by Step 67
4.1 Introduction 67
4.1.1 Efficiency Improves Quality, Revenue, and Success 67
4.1.1.1 Quality 67
4.1.1.2 Revenue 67
4.1.1.3 Success 68
4.2 Operating Room Efficiency Defined 68
4.3 Myths and Realities of Operating Room Efficiency 68
4.3.1 Myth #1: You Need More Manpower to Increase Efficiency 68
4.3.1.1 Reality #1 68
4.3.2 Myth #2: You Need More Instrument Sets to Improve Your Efficiency 68
4.3.2.1 Reality #2 69
4.3.3 Myth #3: Our Room Turnover Times Are as Good as It Gets 69
4.3.3.1 Reality #3 69
4.4 Efficiency Theory and Implementation 69
4.4.1 The Big Picture 69
4.4.1.1 External Activities 69
4.4.1.2 Internal Activities 69
4.4.1.3 Convert Internal to External Tasks 69
4.4.1.4 Create Task Overlap 69
4.5 The Operating Room Efficiency Model 70
4.5.1 Implementing This Operating Room Efficiency Model 75
4.5.2 Everyone Must Play an Active Role 76
4.5.3 You Need a Coach 77
4.6 Conclusion 78
5 Laparoscopy vs. Robotics: Ergonomics – Does It Matter? 79
5.1 Introduction 79
5.1.1 Limitations of Laparoscopy 80
5.1.2 Mental Stress 80
5.1.3 Physical Stress 81
5.1.4 The Role of Questionnaires 82
5.1.5 Geometrical Compensation 82
5.1.6 Technological Compensation 84
5.1.7 Telemanipulators 84
5.1.8 Telepresence Surgery 85
5.1.9 The Surgeon's Console 85
5.1.10 The Surgical Arm Unit 86
5.1.11 The 3D Imaging System 87
5.1.12 Ergonomic Advantages of the da Vinci System 87
5.1.13 Ergonomic Disadvantages 87
5.1.14 Comparative Studies on Ergonomics of Laparoscopy and Robotics 88
5.1.15 The Impact of the Type of Procedure 88
5.2 Discussion 89
5.2.1 Interpretation of Magnified Anatomy 89
5.2.2 Lack of Tactile Feedback 90
5.2.3 Coordinated Interaction Between Surgeon and Assistants 90
5.2.4 Prerequisites for a Successful Operation 90
5.2.5 Perspectives 91
5.3 Conclusions 93
References 93
6 Anesthetic Considerations for Robotic Urologic Surgery 95
6.1 Introduction 95
6.2 The Anesthetic Implications of Pneumoperitoneum and Positioning 95
6.2.1 Inflation Gas 95
6.2.2 Intra-abdominal Pressure 96
6.2.3 Cerebral, Ocular, Facial, and Laryngeal Effects 96
6.2.4 Cardiovascular Effects 96
6.2.4.1 Background 96
6.2.4.2 Hemodynamic Changes 98
6.2.4.3 Special Considerations with Cardiac Disease 98
6.2.5 Pulmonary Effects 98
6.2.5.1 Lung Volumes 98
6.2.5.2 Hypercarbia and Hypoxia 98
6.2.5.3 Ventilation Strategies 99
6.2.6 Lower Limb Circulation 99
6.3 Special Monitoring Issues 99
6.3.1 Routine Monitoring 99
6.3.2 Peripheral Nerve Stimulation 99
6.3.3 Hydrostatic Gradients, Blood Pressure, and CVP 100
6.3.4 Pulse Oximetry 100
6.3.5 Capnography and Pulmonary Function 101
6.3.6 Renal Function 101
6.4 Pre-anesthesia Assessment 101
6.5 Special Anesthesia Concerns 102
6.5.1 Airway Management 102
6.5.2 Neuromuscular Blockade 102
6.5.3 Anesthetic Maintenance Drugs 102
6.5.4 Fluid Management 103
6.5.5 Complications 103
6.6 The Specific Conduct of Anesthesia 104
6.6.1 Reported Methods 104
6.6.2 Local Anesthetics 104
6.6.3 Neuraxial Blockade 105
6.6.3.1 Epidural Supplementation 105
6.6.3.2 Neuraxial Alone 105
6.6.3.3 Subarachnoid Supplementation 105
6.6.3.4 Extended Release Epidural Morphine (EREM) 106
6.6.4 Pharmacologic Multimodal Analgesia 106
6.6.5 Promotility and Antiemesis 107
6.6.6 Author's Preferences for Anesthetic Management 107
References 108
7 The Development of a Robotic Urology Program in the UK 112
7.1 History of Robotic Urology in the UK 112
7.2 Establishing a Robotics Program Within an NHS Foundation Trust Hospital 113
7.2.1 The Decision to Start a Robotics Program in the UK 113
7.2.2 Financing a Robotics Program 113
7.2.3 Establishing a Robotics Team 114
7.2.4 Training the First Robotics Team 115
7.2.5 The First Cases: A Mentor-Guided Approach 116
7.3 Current Practice of RALP Within an NHS Foundation Trust Hospital: Development and Training 117
7.3.1 Refining the Operative Technique 117
7.3.2 Perioperative Management 118
7.3.3 Results and Learning Curves: A Personal Experience 119
7.3.4 Training the Next Generation 121
7.4 The Difficulties of Developing a Robotics Program Within the NHS, and the Future. . . 122
7.4.1 Funding Robotic Surgery in the NHS 123
7.4.2 The Future of Robotic Urology in the UK 123
References 124
8 Robotic Urologic Surgery: How to Make an Effective Robotic Program 125
8.1 Introduction 125
8.2 Market and Cost Analysis 125
8.3 Cost and Performance of a Urological Robotics Program 126
8.4 Initial Purchasing and Maintenance Costs 128
8.5 Robotic Surgical Procedures Currently Offered 128
8.6 Facility Planning 128
8.6.1 Operating Room Requirements 128
8.6.2 The Robotics Team 129
8.6.3 Necessary Equipment 129
8.6.4 Training Programs 129
8.7 Research and Outcomes 130
8.8 Establishing a Plan of Action – Is Robotics Program Sustainable at Your Institution 130
References 130
9 Witnessing the Transition of Open to Robotic Surgery 132
9.1 Introduction 132
9.2 A History of Robotic Technology 132
9.3 Robotic-Assisted Laparoscopic Radical Prostatectomy 133
9.3.1 RAP: The Learning Curve 134
9.3.2 RAP: Positive Margins and Oncologic Outcomes 134
9.3.3 RAP: Functional Outcomes 135
9.3.4 RAP: Conclusions 136
9.4 Robotic-Assisted Laparoscopic Pyeloplasty 136
9.5 Robotic-Assisted Laparoscopic Partial Nephrectomy 137
9.6 Robotic-Assisted Laparoscopic Radical Cystectomy 138
9.7 Expanding Application and the Future of Robotics in Urology 138
9.8 Conclusions 140
References 140
10 Patient-Side Surgeons: The Unsung Heroes of Robotic Surgery 143
10.1 Introduction 143
10.2 Importance of the Assistant 143
10.3 Requirements of the Assistant 143
10.3.1 Patient Positioning, Gaining Access, and Port Placement 144
10.3.2 Principles of Docking, Sweet Spot, and Burping 145
10.3.3 Being Comfortable 145
10.4 Basic Rules and Principles During the Operation 146
10.5 Urgent and Emergent Scenarios 147
10.6 Troubleshooting 147
10.7 Summary 147
References 149
Part II Training and Research 150
11 Training in Robotic Urologic Surgery 151
11.1 Introduction 151
11.2 Learning Curve for Robotic Surgery 151
11.3 Robotic Training for Residents 152
11.4 Robotic Training in Fellowship 153
11.5 Postgraduate Courses 153
11.6 Postgraduate Mini-Fellowship 154
11.7 Simulators 154
11.8 Conclusion 155
References 155
12 Animal Laboratory Training: Current Status and How Essential Is It? 157
12.1 Introduction 157
12.2 Inanimate Models 158
12.3 Animate Models 158
12.4 Human Cadavers 160
12.5 Virtual Reality Simulators 161
12.6 Standard Robotic Training Curriculum 161
12.7 Experimental Study 161
12.8 Conclusion 164
References 165
13 Training of Operating Room Technician and Nurses in Robotic Surgery 167
13.1 Introduction 167
13.2 Role of the Nurse and Technician 167
13.3 The Dedicated Operating Room Team 169
13.4 Robotic Room Preparation 170
13.5 Robotic Assistants 171
13.6 Conclusion 172
References 172
14 Impact of Virtual Reality Simulators in Training of Robotic Surgery 173
14.1 Overview of Simulation 173
14.2 Reliability and Validation 174
14.3 Overview of Current Virtual Reality Robotic Simulators 174
14.4 Mimic dV-Trainer 174
14.5 Surgical SIM Robotic Surgery Simulator 175
14.6 RoSS System 176
14.7 Incorporation of Virtual Reality Simulation in the Robotic Surgical Curriculum 176
14.8 Future Directions 177
References 178
15 Training, Credentialing, and Hospital Privileging for Robotic Urological Surgery 179
15.1 Introduction 179
15.2 Measuring the Robotic "Learning Curve" and Its Impact on Patient Care 180
15.3 Current Status of Robotic Urological Surgery Credentialing 181
15.4 Current Status of Robotic Urological Surgery Training 184
15.4.1 Residency and Fellowship 184
15.4.2 Mini-Residency Training 185
15.4.3 Simulators 185
15.4.4 Proctoring and Preceptoring 187
15.5 Remote Presence Proctoring 188
15.6 Credentialing and Privileging in Other Surgical Specialities 188
15.7 Conclusions and Current Recommendations 189
References 190
16 Research in Urologic Oncology in an Era of Minimally Invasive Surgery 192
16.1 Introduction 192
16.2 The Surgeon Scientist 192
16.3 Challenges 192
16.4 Corrective Action 194
16.5 Conclusion 196
References 196
17 Databases and Data Management for Robotic Surgery 198
17.1 Motivation 198
17.2 Form Design 198
17.3 Selection of Variables 199
17.4 Data Collection Tool Development 199
17.5 Database Considerations 200
17.6 Cloud Computing 201
17.7 Private Clouds 201
17.8 Conclusion 204
References 204
18 The Role of Scientific Journals in Disseminating New Technology 205
18.1 Introduction 205
18.2 Appraisal of New Technology 205
18.3 Regulating New Technologies 206
18.4 Scientific Journals at the Hub of Disseminating New Technologies 206
18.5 Transurethral Resection of the Prostate 206
18.6 Laparoscopic Radical Nephrectomy 207
18.7 Applying Technology in New and Innovative Ways 208
18.8 Exciting New Technologies Surfacing in Scientific Journals: Augmented Reality Images 209
18.9 Natural Orifice Surgery 209
18.10 Summary 210
References 210
19 Predicting Robotic Utilization in Urologic Disease: An Epidemiology-Based Model 212
19.1 Introduction 212
19.2 Overview of Epidemiology 212
19.3 Description of the Model 213
19.3.1 Variables 214
19.3.2 Changes in Population Trends 214
19.3.3 Changes in Incidence or Progression 215
19.3.4 Changes in Detection 215
19.3.5 Therapies That Make Inoperable Patients Operable 216
19.3.6 Treatment Trends or Changes in Paradigms 216
19.3.7 Price and Popularity 216
19.4 Examples of Its Application 216
19.4.1 Prostate Cancer 216
19.4.1.1 Epidemiology 216
19.4.1.2 Treatments and Trends 217
19.4.1.3 Sample Calculation 217
19.4.1.4 Variables 219
19.4.1.5 Summary 219
19.4.2 Renal Cell Cancer 219
19.4.2.1 Epidemiology 219
19.4.2.2 Treatment and Trends 219
19.4.2.3 Sample Calculation 219
19.4.2.4 Variables 219
19.4.2.5 Summary 220
19.4.3 Bladder Cancer 220
19.4.3.1 Epidemiology 220
19.4.3.2 Treatment and Trends 220
19.4.3.3 Sample Calculation 221
19.4.3.4 Variables 221
19.4.3.5 Summary 221
19.4.4 Female Pelvic Dysfunction 221
19.4.4.1 Epidemiology 221
19.4.4.2 Treatment and Trends 221
19.4.4.3 Sample Calculation 222
19.4.4.4 Variables 222
19.4.4.5 Summary 222
19.5 Conclusion 222
References 223
Part III The Prostate 224
20 Development of the Vattikuti Institute Prostatectomy: Historical Perspective and Technical Nuances 225
20.1 Introduction 225
20.2 Historical Perspective (See Timeline) 225
20.3 Comparison with Open and Laparoscopic Radical Prostatectomy 226
20.4 Outcomes After First 1,100 Cases 227
20.5 Nerve Preservation 227
20.6 Outcomes with the "Veil of Aphrodite" Nerve-Sparing Technique 229
20.7 Progression to the "Super Veil" Nerve-Sparing Technique 229
20.8 Outcomes of the Super Veil Nerve-Sparing Technique 230
20.9 Optimization of Urinary Continence Through Precise Apical Dissection 232
20.10 Anastomosis Using a Barbed Wound Closure Device: the Knotless Anastomosis 232
20.11 Initial Outcomes with Single-Layer Running Urethrovesical Anastomosis 234
20.12 Double-Layer Urethrovesical Anastomosis 236
20.13 Outcomes of the Double-Layer Urethrovesical Anastomosis 236
20.14 Percutaneous Suprapubic Tube (PST) Drainage 237
20.15 Outcomes of Percutaneous Suprapubic Tube (PST) Drainage 238
20.16 Isolated Internal Iliac Node Dissection for Low-Risk Prostate Cancer 238
20.17 Outcomes for Isolated Internal Iliac Node Dissection for Low-Risk Prostate Cancer 239
20.18 Biochemical Recurrence and Oncologic Outcomes 240
20.19 Effect of the Learning Curve 241
20.20 Steps of the Vattikuti Institute Prostatectomy (VIP) Procedure 242
20.21 Basics 242
20.22 Release of Bowel 242
20.23 Bladder Mobilization 242
20.24 Division of the Bladder Neck 244
20.25 Incision of Denonvilliers Fascia and Dissection of Vas Deferens and Seminal Vesicles 244
20.26 Nerve Sparing 244
20.27 Apical Dissection and Division of the Urethra 245
20.28 Bilateral Pelvic Lymphadenectomy 245
20.29 Running Urethrovesical Anastomosis 245
20.30 Postoperative Care 246
20.31 Summary 246
20.32 Conclusion 246
References 246
21 Transferring Knowledge of Anatomical Dissection from the Laboratory to the Patient: An Australian Perspective 248
21.1 Introduction 248
21.2 Preliminary Anatomical Dissection of the Neurovascular Region of the Prostate 249
21.2.1 Background to the Study 249
21.2.2 Dissection Protocols 249
21.2.3 Discussion of NVB Anatomy 249
21.3 Autonomic Immunohistochemical Staining 251
21.3.1 Background to the Study 251
21.3.2 Experimental Techniques 251
21.3.3 Results 252
21.3.4 Parasympathetic Nerve Fiber Distribution 252
21.3.5 Discussion of Immunhistochemical Staining 254
21.4 Discussion 255
21.5 Future Directions 256
21.6 Conclusions 257
References 257
22 Robot-Assisted Radical Prostatectomy: A Prostate Surgeon's Perspective 259
22.1 Introduction 259
22.2 Radical Prostatectomy in Perspective 259
22.3 Summary 263
References 263
23 Cautery-Free Technique of Robot-Assisted Radical Prostatectomy: Impact on Nerve Preservation and Long-Term Outcome on Recovery of Sexual Function 265
23.1 Introduction 265
23.2 Cavernous Neuroanatomy 265
23.3 Classification of Nerve Injury 267
23.4 Thermal Injury 267
23.5 Inflammatory Damage 268
23.6 Hypothermia 268
23.7 Preoperative Planning 269
23.8 Neurovascular Bundle Dissection 270
23.9 Irrigation 271
23.10 Anatomic Factors Affecting Operative Technique 271
23.10.1 High Anterior Release and the Veil of Aphrodite 271
23.11 Controlling the Prostatic Vascular Pedicle 272
23.12 Potency Outcomes with Cautery-Free Technique 272
23.13 Effect of Unilateral Wide Excision on Potency 273
23.14 Conclusion 274
References 274
24 Current Concepts in Cavernosal Neural Anatomy and Imaging and Their Implications for Nerve-Sparing Radical Prostatectomy 277
24.1 Introduction 277
24.2 Anatomic Basis of Erectogenic Nerve Preservation 277
24.2.1 Neurovascular Bundles and Cavernosal Nerves 277
24.2.2 Anatomic Variants of Cavernosal Nerves 278
24.2.3 Trizonal Hammock Concept 278
24.2.4 Fascial Planes Surrounding the Prostate Capsule 279
24.3 Techniques for Optimizing Cavernosal Nerve Preservation 280
24.3.1 Techniques for Retropubic Radical Prostatectomy 280
24.3.2 Periprostatic Planes of Fascial Dissection 281
24.3.3 Trizonal Risk-Stratified Nerve-Sparing Approach 282
24.3.4 Alternatives to Electrocautery 283
24.3.5 Nerve Reconstruction and Regeneration 285
24.4 Advances in Cavernosal Neural Imaging 285
24.5 Optical Coherence Tomography 286
24.6 Spectroscopy 287
24.7 Fluorescent Imaging 287
24.8 Exogenous Fluoroscopy 288
24.9 Endogenous Autofluorescence 288
24.10 Conclusion 290
References 291
25 Robot-Assisted Radical Prostatectomy for Large Glands and Median Lobe 294
25.1 Introduction 294
25.2 Embryology of the Prostate 294
25.3 RARP for Median Lobe 294
25.3.1 Literature Review 295
25.3.2 Surgical Technique 295
25.3.3 Management of the Ureteral Orifices 296
25.4 RARP for Large Prostate 297
25.4.1 Technical Modifications for Large Prostates 298
25.4.2 Management of the Large Bladder Neck 298
References 299
26 Extraperitoneal Robot-Assisted Radical Prostatectomy: Simulating the Gold Standard 301
26.1 Introduction 301
26.1.1 Robot-Assisted Radical Prostatectomy Procedure 301
26.1.1.1 Access 301
26.1.1.2 Port Placement 301
26.1.1.3 Endopelvic Fascia 302
26.1.1.4 Dorsal Vein Ligation 302
26.1.1.5 Bladder Neck Dissection 302
26.1.1.6 Seminal Vesicle Dissection 302
26.1.1.7 Posterior Prostate Dissection 302
26.1.1.8 Neurovascular Bundle Dissection 302
26.1.1.9 Apical Dissection 303
26.1.1.10 Vesicourethral Anastomosis 303
26.1.1.11 Specimen Retrieval and Closure 304
26.1.1.12 Postoperative Care 305
26.1.2 Comparing to the Gold Standard 305
26.1.3 The False Arguments Against the Extraperitoneal Approach 305
26.1.3.1 The Anastomosis 305
26.1.3.2 The Working Space 306
26.1.3.3 The Extended Node Dissection 307
26.2 Conclusions 308
References 308
27 The Retrograde Extraperitoneal Approach: Robotic Retrograde Extraperitoneal Laparoscopic Prostatectomy (RRELP) 309
27.1 Introduction 309
27.2 Indication and Preoperative Preparation 309
27.3 Operative Setup 310
27.4 Patient Positioning 310
27.5 Instrumentation List 311
27.6 Step-by-Step Technique 312
27.7 Postoperative Management 317
27.8 Data Management 317
27.9 Special Considerations 317
27.10 Steps to Avoiding Complications 318
27.11 Discussion 318
27.12 Conclusion 319
References 320
28 Technical Modifications for Robotic Prostatectomy 321
28.1 Introduction 321
28.2 Periurethral Suspension Stitch 321
28.2.1 Surgical Technique 322
28.2.2 Comments 323
28.3 Modified Posterior Reconstruction of the Rhabdosphincter 323
28.3.1 Surgical Technique 323
28.3.2 Comments 324
28.4 Athermal Seminal Vesicle Dissection 324
28.4.1 Surgical Technique 324
28.4.2 Comments 325
28.5 Athermal Early Retrograde Release of the Neurovascular Bundles 325
28.5.1 Surgical Technique 325
28.5.2 Comments 326
28.6 Conclusions 327
References 327
29 Robotic Radical Prostatectomy: Cancer Control and Implications of Margin Positivity 328
29.1 Introduction 328
29.2 Definitions of Positive Surgical Margins 329
29.3 Positive Surgical Margins with RARP 329
29.3.1 Early RARP PSM Outcomes 329
29.3.2 Experienced RARP PSM Outcomes 330
29.4 Risk Factors for Positive Surgical Margins 331
29.5 Comparison of PSM Outcomes Among RARP, ORP, and LRP Series 332
29.6 Location, Number, and Size of Positive Surgical Margins 333
29.7 Impact of PSMs on Oncologic Outcomes 334
29.8 Adjuvant Radiation for Locally Advanced Disease and/or Positive Surgical Margins 336
29.9 Surgical Techniques to Improve Cancer Control 337
29.10 Conclusions 338
References 339
30 Techniques to Improve Urinary Continence Following Robot-Assisted Radical Prostatectomy 342
30.1 Introduction 342
30.2 Definitions 342
30.3 Background 342
30.4 Mechanism of Urinary Incontinence After Radical Prostatectomy 344
30.5 Factors Influencing Continence After RARP 345
30.5.1 Age 345
30.5.2 Prostate Size 345
30.5.3 Pathology 345
30.5.4 Nerve Sparing 345
30.5.5 Anastomotic Strictures 346
30.5.6 BMI (Body Mass Index) 346
30.5.7 Effect of Previous Surgery 346
30.6 Evaluation of Incontinence After RARP 346
30.6.1 History and Physical Examination 346
30.6.2 Further Investigation 347
30.7 Non-operative Strategies to Improve Continence Following RARP 347
30.7.1 Smoking Cessation 347
30.7.2 Pelvic Floor Muscle Exercise/Therapy (PMFT) 347
30.7.2.1 Pharmacotherapy 348
30.8 Intraoperative Techniques 348
30.8.1 Preservation of the Puboprostatic Ligaments 348
30.8.2 Suspension of the Dorsal Venous Complex 349
30.8.3 Bladder Neck Preservation 349
30.8.4 Nerve Sparing 349
30.8.5 Hypothermia of the Pelvic Floor 350
30.8.6 Apical Dissection 350
30.8.7 Preservation of Urethral Length 352
30.8.8 Posterior Repair 353
30.8.9 Walsh Intussusception Stitch 354
30.8.10 Creation of a Watertight Anastomosis 355
30.9 Postoperative Surgical Therapies for Post-prostatectomy Incontinence 355
30.9.1 Injection Therapy 355
30.9.2 The Male Sling 356
30.9.3 Artificial Urinary Sphincter 357
30.10 Conclusion 357
References 357
31 Penile Rehabilitation After Robotic Radical Prostatectomy: The Best Strategy 362
31.1 Introduction 362
31.2 Rationale for PDE5-I Prophylaxis in the Prevention of Post-RP Erectile Dysfunction 364
31.3 Management of Post-RP Erectile Dysfunction 365
31.4 Phosphodiesterase Type 5 Inhibitors in the Management of Post-prostatectomy ED 366
31.5 Other Treatments in the Management of Post-prostatectomy ED 367
31.6 Conclusions 368
References 368
32 Laparoscopy or Robotic Radical Prostatectomy: Pros and Cons 372
32.1 Advantages of the Laparoscopic Approach 372
32.2 Disadvantages of the Laparoscopic Approach 372
32.3 Advantages of the Robotic-Assisted Procedure 372
32.4 Disadvantages of the Robotic-Assisted Procedure 373
32.5 Results 373
32.5.1 Perioperative Results 373
32.5.2 Oncologic Outcomes 374
32.5.3 Functional Results 374
32.5.3.1 Urinary Continence 374
32.5.3.2 Erectile Function 374
32.6 Conclusions 374
References 375
33 Complications of Robotic Prostatectomy 377
33.1 Introduction 377
33.2 Technique of Vattikuti Institute Prostatectomy (VIP) 377
33.2.1 Patient Selection 378
33.2.2 Patient Positioning and Port Placement 378
33.2.3 Developing of the Extraperitoneal Space 378
33.2.4 Lymph Node Dissection 378
33.2.5 Bladder Neck Transection and Posterior Dissection 378
33.2.6 Nerve Sparing 379
33.2.7 Apical Dissection and Urethral Transection 379
33.2.8 Urethrovesical Anastomosis 379
33.2.9 Suprapubic Catheter Placement 380
33.2.10 Specimen Retrieval 380
33.2.11 Postoperative Care 380
33.3 Data Collection 381
33.4 Complications 381
33.4.1 Anesthesia-Related Complications (< 0.1%)
33.4.2 Non-vascular Access-Related Complications (0.1%) 382
33.4.2.1 Subcutaneous Emphysema and Air Embolism (0%) 382
33.4.2.2 Visceral Injury (0.1%) 382
33.4.3 Vascular Complications (< 0.1%)
33.4.3.1 Access Related (< 0.1%)
33.4.3.2 Access Unrelated (< 0.1%)
33.4.4 Rectal Injury (0.3%) 384
33.4.5 Ureteral Injury (< 0.1)
33.4.6 Postoperative Anemia and Blood Transfusion (1.9%) 384
33.4.6.1 Management of Acute Postoperative Hemorrhage After Robotic Prostatectomy 385
33.4.7 Urinary Ascites (0.7%) 385
33.4.8 Postoperative Ileus (0.7%) 386
33.4.9 Bowel Complications (0.2%) 387
33.4.10 Lymphocele (0.2%) 387
33.4.11 Urinary Retention (1.5%) 387
33.4.12 Medical Complications (0.5%) 388
33.5 Delayed Complications 388
33.5.1 Continence 388
33.5.2 Potency 388
33.6 Conclusion 389
References 389
Part IV Adrenal, Kidney, and Ureter 391
34 Robotic Urologic Surgery: Robotic-Assisted Adrenalectomy 392
34.1 Introduction 392
34.2 Planning 392
34.3 Operative Team and Positioning 392
34.4 Trocar Configuration 393
34.5 Left Robotic-Assisted Adrenalectomy 393
34.5.1 Exposure of the Adrenal Gland 393
34.5.2 Identification of the Adrenal Vein 394
34.6 Removal of the Gland 395
34.7 Right Robotic-Assisted Adrenalectomy 395
34.7.1 Exposure of the Adrenal Gland 395
34.8 Post-operative Management 397
34.9 Complications 397
34.10 Conclusion 398
References 398
35 Robot-Assisted Laparoscopic Radical Nephrectomy and Nephroureterectomy 400
35.1 Robot-Assisted Laparoscopic Radical Nephrectomy 400
35.1.1 Indications/Contraindications 400
35.1.2 Patient Preparation 400
35.2 Transperitoneal RALN 401
35.3 Retroperitoneal RALN 405
35.4 Patient Positioning, Retroperitoneal Access, and Port Placement 405
35.5 Docking of Robot 405
35.6 Robot-Assisted Nephroureterectomy 406
35.6.1 Indication 406
35.6.2 Patient Preparation 406
35.6.3 Procedure 406
References 409
36 Robot-Assisted Partial Nephrectomy 410
36.1 Introduction 410
36.2 The Evolution of Renal Surgery 410
36.3 Atlas of Technique 411
36.3.1 Patient Selection and Other Considerations 411
36.3.2 Patient Positioning and Trocar Placement 412
36.3.3 Robot Docking and Instrument Selection 413
36.3.4 Initial Dissection 414
36.3.5 Preparing for Excision 414
36.3.6 Tumor Excision 415
36.3.7 Renal Reconstruction 415
36.3.8 Extraction and Closure 416
36.3.9 Postoperative Care and Management of Perioperative Complications 416
36.3.10 Long-Term Follow-Up 416
36.4 Outcomes of Robot-Assisted Partial Nephrectomy 416
36.5 Learning Curve and Technical Refinements 417
36.6 The Case for Robot-Assisted Partial Nephrectomy 419
36.7 Conclusions 419
References 419
37 Robotic Urologic Surgery: Robot-Assisted Partial Nephrectomy 422
37.1 Introduction 422
37.2 Operative Setup 422
37.3 Patient Positioning 422
37.4 Trocar Configuration 423
37.5 Sutures 424
37.5.1 Inner Layer Reconstruction 424
37.5.2 Capsular Reconstruction 424
37.6 Step-by-Step Technique 424
37.6.1 Step 1: Trocar Placement 424
37.6.2 Step 2: Bowel Mobilization and Identification of Anatomic Landmarks 424
37.6.3 Step 3: Hilar Dissection 425
37.6.4 Step 4: Tumor Identification 426
37.6.5 Step 5: Hilar Clamping 427
37.6.6 Step 6: Tumor Excision 427
37.6.7 Step 7: Inner Layer Renal Reconstruction 428
37.6.8 Step 8: Capsular Reconstruction and Clamp Removal 429
37.6.9 Step 9: Specimen Retrieval and Closure 430
37.7 Special Considerations 430
37.8 Steps to Avoid Complications 431
37.9 Conclusions 432
References 432
38 Robotic Donor Nephrectomy: Technique and Outcomes – An European Perspective 433
38.1 Introduction 433
38.2 Preoperative Kidney Evaluation 433
38.3 Patient Positioning and Port Placement 433
38.4 Surgical Steps 434
38.5 Postoperative Care 435
38.6 Results 435
38.7 Conclusion 435
References 435
39 Robotic Donor Nephrectomy 436
39.1 Introduction 436
39.2 Surgical Anatomy 437
39.3 The Robotic System 437
39.4 Preoperative Evaluation 437
39.5 Surgical Technique 437
39.5.1 Patient Positioning 437
39.5.2 Port Placement 438
39.5.3 Mobilization of the Descending Colon and Identification of the Ureter 438
39.5.4 Posterior Dissection of the Kidney 438
39.5.5 Anterior Dissection of the Kidney 439
39.5.6 Dissection of the Renal Hilum 439
39.5.7 Division of the Renal Hilum and Kidney Removal 439
39.6 Postoperative Care 439
39.7 Management of Complications 439
39.8 Conclusion 440
References 440
40 Robot-Assisted Laparoscopic Pyeloplasty 441
40.1 History and Introduction 441
40.2 Surgical Technique of Robot-Assisted Laparoscopic Pyeloplasty (RALPP) 442
40.2.1 Pre-operative Assessment 442
40.2.2 Indications 442
40.2.3 Contraindications 442
40.2.4 Pre-operative Preparation 442
40.2.5 Position 445
40.2.6 Surgical Approach 445
40.3 Excision, Reduction Pyeloplasty, Stenting, and Ureteropyelostomy 446
40.4 Managing Concomitant Surgical Pathologies 454
40.5 Discussion 456
40.6 Conclusion 459
References 459
41 Robotic Surgery for Urolithiasis 462
41.1 Indications 462
41.1.1 Renal Calculi with Ureteropelvic Junction Obstruction 462
41.1.2 Large/Staghorn Renal Calculi 463
41.1.3 Pediatric Renal Calculi 463
41.1.4 Ectopic Kidneys 464
41.1.5 Stones in Renal Diverticula 464
41.1.6 Calculi with Associated Anomalies 464
41.1.7 Non-functioning Segments/Kidneys 464
41.2 Operative Setup 465
41.2.1 Retrograde Catheter Placement 465
41.2.2 Patient Positioning 465
41.2.3 Trocar Configuration 465
41.2.4 Instrumentation List 466
41.2.5 Step-by-Step Technique: Pyelolithotomy/Pyeloplasty 466
41.2.5.1 Trans-mesocolic Approach 466
41.2.5.1 Step #2: Pelvis Exposure, Retraction, and Pyelotomy 466
41.2.5.1 Step #3: Stone Extraction 467
41.2.5.1 Step #4: Pyeloplasty/Pyelotomy Closure 467
41.2.5.1 Step #5: Postoperative Care 468
41.2.6 Step-by-Step Technique: Diverticular Stones 468
41.2.6.0 Step # 1: Kidney Exposure: Colon Mobilization 468
41.2.6.0 Step #2: Stone Localization and Removal 468
41.2.7 Step-by-Step Technique: Partial/Simple Nephrectomy 468
41.3 Specific Situation: Pelvic Kidney 468
41.4 Avoiding Complications 469
41.5 Conclusions 469
References 470
42 Ureteral Reconstruction Utilizing Robotic-Assisted Techniques 471
42.1 Introduction 471
42.2 Preoperative Assessment 471
42.3 Operative Setup 471
42.4 Robotic Ureterolysis 472
42.5 Ureterocalicostomy 472
42.6 Ureteroureterostomy 473
42.7 Ureteral Reimplantation 474
42.8 Conclusion 475
References 475
43 Robotic or Laparoscopic Renal Surgery: Pros and Cons 476
43.1 Malignant Disease 476
43.1.1 Partial Nephrectomy (PN) 476
43.1.1.1 Introduction 476
43.1.1.2 Indications and Contraindications 476
43.1.1.3 Oncological Outcomes 477
43.1.1.4 Positive Margins 478
43.1.1.5 Risk of Tumor Spillage or Port-Site Seeding 480
43.1.1.6 Functional Outcomes 480
43.1.1.7 Complications in LPN and RAPN 484
43.1.1.8 Conclusion 484
43.1.2 Laparoscopic Nephrectomy (LN) 485
43.1.2.1 Introduction 485
43.1.2.2 Indications and Contraindications 485
43.1.2.3 Oncological Outcomes 485
43.1.2.4 Complications 486
43.1.2.5 Robot-Assisted Radical Nephrectomy (RAPN) 486
43.2 Benign Disease 487
43.2.1 Laparoscopic or Robot-Assisted Pyeloplasty 487
43.2.1.1 Introduction 487
43.2.1.2 Indications 487
43.2.1.3 Laparoscopic Pyeloplasty (LP) vs Robot-Assisted Laparoscopic Pyeloplasty (RALP) 487
43.2.1.4 Conclusion 488
References 489
Part V Bladder 493
44 Robot-Assisted Radical Cystectomy in Male: Technique of Spaces 494
44.1 Introduction 494
44.2 Surgical Technique 495
44.2.1 Pelvic Anatomy Overview 495
44.2.2 Periureteral Space 495
44.2.2.1 Lateral Pelvic Space 495
44.2.2.2 Anterior Rectal Space 495
44.2.3 Positioning 496
44.2.4 Port Placement 496
44.2.5 Surgical Steps 497
44.2.5.1 Development of Periureteral Space 497
44.2.5.2 Development of Lateral Pelvic Space 497
44.2.5.3 Development of Anterior Rectal Space 497
44.2.5.4 Control of Vascular Pedicles and Mobilization of Neurovascular Bundles 497
44.2.5.5 Anterior Exposure and Apical Dissection 498
44.2.5.6 Crossing of the Ureter 498
44.2.6 Extended Lymph Node Dissection (Release and Roll Technique) 498
44.3 Postoperative Care 499
44.4 Results 501
44.5 Conclusions 501
References 501
45 Robotic-Assisted Laparoscopic Anterior Pelvic Exenteration for Bladder Cancer in the Female 502
45.1 Introduction 502
45.2 Methods 502
45.2.1 Pre-operative Evaluation 502
45.2.2 Patient Selection 503
45.2.3 Bowel Preparation 503
45.2.4 Intraoperative Considerations 503
45.2.5 Steps of the Procedure 503
45.2.5.1 Positioning and Port Placement 503
45.2.6 Procedural Steps 505
45.2.7 Postoperative Care 510
45.3 Results 510
45.4 Comment 511
References 512
46 Robotic-Assisted Laparoscopic Extended Pelvic Lymph Node Dissection for Bladder Cancer 513
46.1 Introduction 513
46.2 Anatomy of Lymphatic Drainage of the Bladder 514
46.3 Incidence of Lymph Node Metastases Identified at Cystectomy 515
46.4 Implications of Bladder Cancer Lymph Node Metastases 515
46.5 Extent of Lymph Node Dissection at Time of Cystectomy 516
46.6 Robotic-Assisted Laparoscopic Radical Cystectomy 517
46.7 Technique for the Robotic-Assisted Laparoscopic Extended Lymph Node Dissection at Wake Forest University 517
46.8 Results at Our Institution and Others with the Robotic-Assisted Laparoscopic Lymph Node Dissection 519
46.9 Complications of Robot-Assisted Lymph Node Dissection for Bladder Cancer 520
46.10 Conclusions 521
References 521
47 Robot-Assisted Intracorporeal Ileal Conduit 523
47.1 Introduction 523
47.2 Historical Background 523
47.3 Surgical Technique 524
47.3.1 Operative Steps 524
47.3.2 Postoperative Care 528
47.4 Results 528
47.5 Discussion 528
47.6 Conclusions 529
References 529
48 Robotic Urinary Diversion: Technique, Current Status, and Outcomes 530
48.1 Introduction 530
48.2 Patient Selection 531
48.3 Preoperative Preparation 531
48.4 Operative Setup 531
48.4.1 Patient Position 531
48.5 Equipment 532
48.6 Surgical Steps 532
48.6.1 Trocar Configuration 532
48.6.2 Urinary Diversion 532
48.6.2.1 Orthotopic Neobladder, Intracorporeal Technique 532
48.6.2.2 Ileal Conduit, Intracorporeal Technique 535
48.6.2.3 Orthotopic Neobladder, Extracorporeal Technique 536
48.6.2.4 Ileal Conduit, Extracorporeal Technique 536
48.6.2.5 Special Consideration 536
48.7 Steps to Avoid Complication 537
48.8 Current Status and Outcomes 537
References 539
49 Robotic Bladder Surgery Complications: Prevention and Management 541
49.1 Current Literature on Robot-Assisted Bladder Surgery 542
49.2 Complications Inherent to the Robotic Approach 543
49.2.1 Equipment Malfunction 543
49.2.2 Positioning 543
49.2.3 Creation of Pneumoperitoneum, Port Placement, and Insertion of Trocars 544
49.2.4 Cardiopulmonary Complications 546
49.2.5 Unidentified Bowel Injury 547
49.2.6 Electrosurgical Etiology 547
49.2.7 Mechanical Etiology 548
49.3 Complications Inherent to Bladder Surgery 548
49.3.1 Vascular Injury 548
49.3.2 Incisional Hernia 549
49.3.3 Postoperative Ileus 550
49.3.4 Lymphocele and Lymph Leak 551
49.3.5 Wound Infection 551
49.3.6 Deep Venous Thrombosis 552
49.4 Complications of Urinary Diversion and Urine Leak from the Bladder 552
49.5 Summary 553
References 553
Part VI Pediatric Urology 556
50 Robotic Surgery for Ureteral Anomalies in Children 557
50.1 Introduction 557
50.1.1 Operating Room Setup 557
50.1.2 Patient Positioning 557
50.1.3 Trocar Configuration 557
50.1.4 Instrumentation List 559
50.2 Step-by-Step Technique 559
50.3 Ureteral Reimplantation – Intravesical 561
50.4 Uretero-ureterostomy – High 563
50.5 Uretero-ureterostomy – Low 564
50.6 Special Considerations 565
50.7 Steps to Avoid Complications 565
References 566
51 Robotic Surgery of the Kidney in Children 567
51.1 Introduction 567
51.2 Extirpative Surgery 567
51.2.1 Nephrectomy, Heminephrectomy, and Nephroureterectomy 567
51.2.1.1 Indications 567
51.2.1.2 Operative Setup 568
51.2.1.3 Step-by-Step Technique (Nephrectomy) 570
51.2.1.4 Step-by-Step Technique (Partial Nephrectomy) 571
51.2.1.5 Step-by-Step Technique (Nephroureterectomy) 572
51.2.1.6 Results of Heminephrectomy 572
51.2.1.7 Steps to Avoid Complications 572
51.3 Reconstructive Surgery 572
51.3.1 Pyeloplasty 572
51.3.1.1 Indications 573
51.3.1.2 Operative Setup 573
51.3.1.3 Step-by-Step Technique 573
51.3.1.4 Results 575
51.3.2 Transposition of Lower Pole Crossing Vessel (''Vascular Hitch'') 575
51.3.2.1 Indications 575
51.3.2.2 Step-by-Step Technique 575
51.3.2.3 Results 576
51.3.3 Ureterocalicostomy 576
51.3.3.1 Indications 576
51.3.3.2 Operative Setup 576
51.3.3.3 Step-by-Step Technique 576
51.3.3.4 Results 577
51.3.4 Robotic Pyelolithotomy 577
51.3.4.1 Indications 577
51.3.4.2 Operative Setup 577
51.3.4.3 Step-by-Step Technique 578
51.3.4.4 Results 578
References 578
52 Robotic Bladder Surgery in Children 580
52.1 General Technique of Robotic Bladder Surgery in Children 580
52.2 Robotic Surgery for Vesicoureteral Reflux (Ureteral Reimplantation) 580
52.2.1 Vesicoscopic Approach (Transvesical Approach) 581
52.2.1.1 Technique 581
52.2.1.2 Clinical Results 581
52.2.2 Extravesical Approach 582
52.2.2.1 Technique 582
52.2.2.2 Clinical Results 582
52.3 Robotic Surgery for Neuropathic Bladder 583
52.3.1 Robotic Appendicovesicostomy 583
52.3.1.1 Technique 583
52.3.2 Robotic Bladder Augmentation (Ileocystoplasty) 584
52.3.2.1 Technique 584
52.3.2.2 Clinical Results 585
52.4 Robotic Surgery for Urachal Anomalies 585
52.4.1 Technique 585
52.4.2 Clinical Results 586
52.5 Conclusion 586
References 586
Part VII Female Urology and Infertility 588
53 Robotic Surgery in Urogynecology 589
53.1 Introduction 589
53.2 Hysterectomy 589
53.3 Myomectomy 590
53.4 Tubal Reanastomosis 590
53.5 Sacrocolpopexy 590
53.5.1 Introduction 590
53.5.2 Preoperative Evaluation 590
53.5.3 Patient Preparation and Positioning 591
53.5.4 Postoperative Course 592
53.5.5 Results 592
53.6 Potential Pitfalls 593
53.7 Conclusion 593
53.8 Future Directions 593
References 593
54 Robotic Repair of Vesico-vaginal Fistula 595
54.1 Introduction 595
54.2 Operative Setup 595
54.3 Patient Positioning 595
54.4 Trocar Configuration 596
54.5 Instrumentation List 596
54.6 Step-by-Step Technique 596
54.6.1 Vaginoscopy, Urethro-cystoscopy, and Bilateral Ureteric Double J Stenting or Catheterization 596
54.6.2 Adhesiolysis 596
54.6.3 Robotic Dissection of VVF 596
54.6.4 Repair of the Fistula 597
54.6.5 Interposition of the Tissue Between Two Suture Lines 598
54.7 Special Considerations 599
54.8 Step to Avoid Complications 599
References 600
55 Robotic Surgery in Male Infertility (Robotic-Assisted Microsurgery) 601
55.1 Introduction 601
55.2 Installation in the Operating Room 601
55.3 Patients Position 601
55.4 Trocars Placement 601
55.5 Instrumentation List 602
55.6 Technique 603
55.7 Important Points 606
55.8 How to Avoid Complications 607
References 607
Part VIII Patient's Perspective 608
56 Treater to Target: Experiences of a Prostate Cancer Participant 609
56.1 Diagnosis 610
56.2 Life After Radical Prostatectomy 611
56.3 Postradiation 613
56.4 Search for Clinical Trial 613
56.5 The Rest of the Story 614
References 615
57 My Prostate Cancer 617
57.1 Introduction 617
57.2 Diagnosis and Treatment Plan 617
57.3 Recovery from the Biopsies 618
57.4 Detroit 618
57.5 Radical Robotic Prostatectomy + Bilateral Pelvic Lymphadenectomies 618
57.6 Postop Days 1–6 619
57.7 One-Week Follow-up 620
57.8 The First 3 Months 620
57.9 Three Months 622
57.10 Six Months 622
57.11 Nine Months 623
57.12 One Year 623
57.13 Eighteen Months 623
57.14 Two Years 623
57.15 Three Years 623
57.16 Afterthought 623
Part IX Future Perspectives 624
58 Telementoring and Telesurgery in Urology 625
58.1 Introduction 625
58.2 Components of a Telemedicine Link 626
58.3 Early Telemedicine 627
58.4 Telementoring 628
58.4.1 Telesurgical Telementoring 628
58.5 Telesurgery 629
58.5.1 Telesurgery Using Master–Slave Devices 629
58.6 Benefits 631
58.7 Problems 631
58.8 The Future 631
58.9 Conclusions 632
References 633
59 Robotic Systems: Past, Present, and Future 635
59.1 Introduction 635
59.2 History 635
59.3 Classification of Medical Robots 636
59.4 Evolution of Medical Robots 637
59.5 Robots in Current Clinical Use 638
59.6 Future Directions 638
59.6.1 Remote Manipulation Robots 639
59.6.2 Direct Image-Guided Robots 640
59.6.3 MRI-Compatible Robots 641
59.6.4 Image-Augmented Remote Manipulation Robots 643
59.7 Conclusion 643
References 643
Index 646

Erscheint lt. Verlag 23.3.2011
Zusatzinfo XIX, 685 p. 401 illus., 369 illus. in color.
Verlagsort London
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Chirurgie
Medizin / Pharmazie Medizinische Fachgebiete Urologie
Medizin / Pharmazie Pflege
Schlagworte robotic surgery • urologic surgery • Urology
ISBN-10 1-84882-114-X / 184882114X
ISBN-13 978-1-84882-114-9 / 9781848821149
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich