Wearable Monitoring Systems (eBook)
XIII, 296 Seiten
Springer US (Verlag)
978-1-4419-7384-9 (ISBN)
As diverse as tomorrow's society constituent groups may be, they will share the common requirements that their life should become safer and healthier, offering higher levels of effectiveness, communication and personal freedom. The key common part to all potential solutions fulfilling these requirements is wearable embedded systems, with longer periods of autonomy, offering wider functionality, more communication possibilities and increased computational power. As electronic and information systems on the human body, their role is to collect relevant physiological information, and to interface between humans and local and/or global information systems. Within this context, there is an increasing need for applications in diverse fields, from health to rescue to sport and even remote activities in space, to have real-time access to vital signs and other behavioral parameters for personalized healthcare, rescue operation planning, etc. This book s coverage will span all scientific and technological areas that define wearable monitoring systems, including sensors, signal processing, energy, system integration, communications, and user interfaces. Six case studies will be used to illustrate the principles and practices introduced.
Part I: Components and Systems 15
Chapter 1: Sensors for Wearable Systems 16
1.1Introduction 16
1.2Biomechanical Sensors 17
1.2.1Inertial Movement Sensors 17
1.3Physiological Sign Sensors 19
1.3.1Respiration Activity 19
1.3.1.1Inductive Plethysmography 20
1.3.1.2Impedance Plethysmography 21
1.3.1.3Pneumography Based on Piezoresistive Sensor 21
1.3.1.4Plethysmography Based on Piezoelectric Sensor 22
1.3.2Galvanic Skin Response 23
1.3.3Pulse Oximetry 25
1.3.4Radiant Thermal Sensors 27
1.3.5Biochemical Markers 30
1.3.6Gas Sensors 31
1.3.7Cardiopulmonary Activity Systems 32
1.4Conclusions 35
References 35
Chapter 2: Energy Harvesting for Self-Powered Wearable Devices 39
2.1 Introduction to Energy Harvestingin Wearable Systems 39
2.2 Principles of Energy Harvesting by Using Human Body Heat 40
2.3 Calculated Characteristics of Wearable TEGs 44
2.4 Human Body as a Heat Source for a Wearable Thermoelectric Power Supply 47
2.5 TEGs in Wearable Devices 51
2.6 Hybrid Thermoelectric-Photovoltaic Wearable Energy Harvesters 55
2.7 TEGs in Clothing 56
2.8 Development of New Technologies for Wearable Thermopiles 58
2.9 Conclusions 60
References 61
Chapter 3: Wireless Communication Technologies for Wearable Systems 62
3.1 System-Level Considerations 63
3.1.1 Body Area Networks 64
3.1.2 Wireless Standards Comparison 65
3.1.2.1 Bluetooth - IEEE 802.15.1 65
3.1.2.2 IEEE 802.15.3 and WiMedia 66
3.1.2.3 IEEE 802.15.4/ZigBee 67
3.1.3 Device and Information Surety 68
3.2 Lower-Level Tradeoffs 69
3.2.1 Wireless Technology Categories 69
3.2.2 Signal Throughput 72
3.2.3 Resource Allocations 73
3.2.4 Power Optimization 74
3.3 Recent Applications of Wireless Technology in Wearable Health Monitoring Systems 75
3.3.1 Human Applications 75
3.3.2 Animal Applications 77
References 80
Chapter 4: Design of Wireless Health Platforms 92
4.1 System Architecture Requirements for Wireless Health Platforms 92
4.2 System Design 93
4.2.1 Sensors 93
4.2.2 Signal Acquisition 94
4.2.3 Processing Module and Data Storage 95
4.2.4 Wireless Interface 95
4.2.5 Energy Management 96
4.3 MicroLEAP: A Wireless Health Platform with Integrated Energy Accounting 96
4.3.1 Hardware 96
4.3.2 Software 98
4.3.3 Performance 99
4.4 MicroLEAP Application: SmartCane 99
4.4.1 System Implementation 100
4.4.2 Real-Time Feedback 100
4.4.3 Proper Strides 101
4.4.4 Continuous Monitoring 102
4.5 MicroLEAP Application: Episodic Sampling 103
4.5.1 Motion Sensors 104
4.5.2 Physiological Sensors 104
4.5.3 Feature Extraction and Classification 105
4.5.4 Control Algorithm 105
4.6 Conclusion and Next Generation Platforms 106
References 106
Chapter 5: Lightweight Signal Processing for Wearable Body Sensor Networks 109
5.1•Wearability Issues 109
5.2System Architecture and Signal Processing Flow 110
5.3Action Coverage for Node Placement 112
5.3.1•Compatibility Graph 113
5.3.2Problem Definition 114
5.3.3ILP Approach 115
5.3.4Greedy Approach 116
5.3.5Dynamic Design Decision 116
5.3.6Experimental Analysis 117
5.3.6.1Compatibility Graphs 117
5.3.6.2Static Design Coverage 119
5.3.6.3Dynamic Design Coverage 121
5.3.6.4Classifier Accuracy 121
5.4Efficient Temporal Parameter Extraction 121
5.4.1HMEM Training and Use 122
5.4.2Overview 123
5.4.2.1Preprocessing and Feature Extraction 123
5.4.2.2HMM Training 124
5.4.2.3Parametrization and Feature Selection 124
5.4.3HMM Training and the Viterbi Algorithm 124
5.4.4Feature Selection and Model Parametrization Using Genetic Algorithms 126
5.4.5HMEM Application Procedure 126
5.4.6Collaborative Segmentation 127
5.4.7Experimental Analysis 127
5.4.7.1Examination of Per-Subject Error 127
5.4.7.2Exploration of Different Sensor Types 128
5.4.7.3Explicit Feature Reduction 129
5.5Summary 131
References 131
Chapter 6: Signal Data Mining from Wearable Systems 133
6.1Definition of the Subject 133
6.1.1Introduction 133
6.1.2Shape of the Data 134
6.1.3Scientific Questions 134
6.1.3.1At the Level of the Individual 134
6.1.3.2At the Level of a Group of Individuals 134
6.1.4Local vs. Remote Analysis 135
6.1.4.1Local or On-Site Analysis 135
6.1.4.2Remote Analysis 135
6.2Feature Extraction 135
6.2.1Time-Frequency Analysis 136
6.2.1.1Application to Wearable Systems 137
6.2.1.2Available Software 137
6.2.2Multiscale Analysis 137
6.2.2.1Application to Wearable Systems 139
6.2.2.2Available Software 139
6.3Dimensionality Reduction 139
6.3.1Principal Component Analysis 140
6.3.1.1Application to Wearable Systems 142
6.3.1.2Available Software 142
6.3.2Independent Component Analysis 142
6.3.2.1Application to Wearable Systems 143
6.3.2.2Available Software 143
6.3.3Laplacian Eigenmaps 143
6.3.3.1Application to Wearable Systems 144
6.3.3.2Available Software 145
6.4Classification, Learning of States, and Detection of Anomalies 145
6.4.1Unsupervised Methods 146
6.4.1.1K-Means Clustering 146
6.4.1.2Mixture of Gaussian Densities 147
6.4.1.3Application to Wearable Systems 148
6.4.1.4Available Software 148
6.4.2Support Vector Machine 148
6.4.2.1Support Vector Classifier 149
6.4.2.2Support Vector Machines 150
6.4.2.3Application to Wearable Systems 150
6.4.2.4Available Software 151
6.4.3Semi-Supervised 151
6.4.3.1Application to Wearable Systems 152
6.4.3.2Available Software 152
6.5Conclusion and Future Directions 152
6.6Glossary 153
References 153
Chapter 7: Future Direction: E-Textiles 157
7.1 Introduction 157
7.2 Fibres and Textiles for Bioelectrodes 158
7.3 Fibres and Textiles for Sensing 160
7.3.1 Physical Sensing 160
7.3.2 Chemical Sensors and Biosensors 161
7.4 Active Fibre Electronics and Woven Logics 162
7.5 Fibres and Textiles for Energy Harvesting and Storage 163
7.5.1 Textile-Based Solar Cells 163
7.5.2 Electronic Textile Batteries 163
7.6 Smart Textiles for Actuation 164
7.6.1 Textile Heating Systems 164
7.6.2 Thermo and Electromechanical Actuation 164
7.7 Textile-Based Communication Devices 165
7.7.1 Textile Keyboards 165
7.7.2 Photonic Fibres and Optical Displays 165
7.7.3 Textile Antennas 166
7.8 Smart Fabrics and Interactive Textiles Platforms 166
References 169
Part II: Applications 15
Chapter 8: A Survey of Commercial Wearable Systems for Sport Application 174
8.1 Introduction 174
8.2 Wearable Systems for the Measurement of Physiological Parameters 175
8.2.1 Heart Rate 175
8.2.2 Using Smart Clothes for Body Signal Measurements 176
8.2.3 Cardiopulmonary Response 177
8.3 Measuring Performance 177
8.3.1 Sensors over Sport Equipment 179
8.4 Biomechanical Measurements 183
8.4.1 Rehabilitation 184
8.4.2 Corporal Pain Detection 184
8.4.3 Technical Orthopaedics 184
8.4.4 Sports Analysis 185
8.4.5 Sports Using an Implement: Bat, Club, Racquet 185
8.5 Conclusions 186
References 187
Chapter 9: Wearable Electronic Systems: Applications to Medical Diagnostics/Monitoring 188
9.1 Introduction 188
9.2 Historical Perspective 189
9.3 Present and Possible Clinical Applications 194
9.3.1 ``Holter-Type´´ Monitoring 195
9.3.2 ``Post-Intervention´´ Monitoring 196
9.3.3 ``On-Demand´´ Monitoring 196
9.3.4 ``Emergency/Disaster´´ Monitoring Systems 197
9.4 Sensing Constraints and Possibilities 198
9.4.1 ``Holter-Type´´ Systems 200
9.4.2 Sensor Patches and Bands 200
9.4.3 Body-Worn Bands and Harnesses 202
9.4.4 Smart Garments 207
9.5 Discussion and Conclusion 210
References 211
Chapter 10: Emergency and Work 213
10.1 Introduction 213
10.2 Designing a Wearable Systems for Emergency and Work: Main Problems and Constraints 215
10.3 Components of the Wearable System 216
10.3.1 Sensors 216
10.3.2 Energy 217
10.3.3 Communications 218
10.3.4 Electronics and Data Processing 218
10.4 The Proetex Wearable System 219
10.4.1 Inner Garment 220
10.4.2 Outer Garment 222
10.4.3 Shoes 224
10.4.4 Communications and Electronics 225
10.5 Conclusions 226
References 226
Chapter 11: Augmenting Exploration: Aerospace, Earth and Self 228
11.1 Introduction: Exploration and Discovery 228
11.2 A Brief History of Wearable Technology for Space 229
11.3 Recent Technological Advances in Technology for Space Exploration 232
11.3.1 Navigation Systems 232
11.3.2 BioSuit Development: A Wearable Second Skin 234
11.4 Modeling the Human Body in Motion 237
11.5 BioSuitTM: Inspired Technology Roadmap for Space and Earth Applications 240
11.6 Transitioning Spacesuit Technology for Earth Applications 241
11.6.1 Current Applications 241
11.6.2 Wearable Future Second Skin Suits 244
11.6.2.1 Actuation 244
11.6.2.2 Sensing 246
Force and Strain Measurement 246
Wearable Kinematics Systems 247
11.7 Concluding Remarks 251
References 251
Part III: Environmental and Commercial Scenarios 15
Chapter 12: Scenarios for the Interaction Between Personal Health Systems and Chronic Patients 258
12.1 Introduction 258
12.2 The New Paradigm of Personalized Health: p-Health 259
12.2.1 Patient-Centered Care: Toward a Holistic Vision of Care 260
12.2.2 p-Health 261
12.3 The AmI Vision 263
12.3.1 Context Awareness 264
12.3.2 Intelligent User Interfaces 266
12.4 Challenges of User Interaction Within the Patient-Centered Care Paradigm 267
12.4.1 What is HCI 268
12.4.2 Traditional HCI Models 269
12.4.3 Implicit Interaction 270
12.5 Scenarios for the Application of AmI to p-Health 272
12.5.1 AmI for Patients with Heart Failure 272
12.5.1.1 Current Research in the EU 273
12.5.1.2 Future Scenarios for the Care of Chronic Heart Patients 274
12.5.2 AmI for Patients with Diabetes 275
12.5.2.1 Current Research in the EU 276
12.5.2.2 Future Scenarios for the Care of Chronic Diabetes Patients 276
12.5.3 AmI for Patients with Mental Disorders (Bipolar Disorder) 277
12.5.3.1 Current Research in the EU 278
12.5.3.2 Future Scenarios for the Care of Bipolar Disorders Patients 278
12.6 Conclusions 279
References 279
Chapter 13: The Commercialization of Smart Fabrics: Intelligent Textiles 281
13.1 Analysis of the Markets: Today and Tomorrow 281
13.1.1 What is a Smart Textile, as Seen from the Technology Perspective? 282
13.1.2 What is a Smart Textile Seen from the User´s Perspective? 283
13.1.2.1 Sensing 283
13.1.2.2 Energy Harvesting 284
13.1.2.3 Acting: Actuating 284
13.1.2.4 Intelligence 285
13.1.2.5 Interface: Including Displaying 285
13.2 Common Backbone of Applications 286
13.2.1 SFIT Configuration 286
13.2.1.1 Elementary Functions Without Embedded Intelligence (e.g., Reactive Color Change) 286
13.2.1.2 Intelligence Embedded in the Textile 286
13.2.1.3 Distributed Versus Localized 286
13.3 Present Situation and Competitors in Terms of RandD and Commercialization 287
13.4 Market Segmentation 290
13.4.1 Medical 290
13.4.2 Wellness 292
13.4.3 Military 293
13.4.4 Professional/Protective 293
13.4.5 Sport 294
13.4.6 Consumer and Fashion Segments 295
13.5 Market Volumes 297
13.6 Conclusions 298
References 298
Index 299
Erscheint lt. Verlag | 17.12.2010 |
---|---|
Zusatzinfo | XIII, 296 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Weitere Themen ► CAD-Programme |
Medizin / Pharmazie ► Pflege | |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Medizintechnik | |
Schlagworte | E-Textiles • MEMS/NEMS • Micro/nano-electronics • Organic electronics • Wearable electronics • Wearable Embedded Systems • Wireless sensors and actuators |
ISBN-10 | 1-4419-7384-2 / 1441973842 |
ISBN-13 | 978-1-4419-7384-9 / 9781441973849 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 6,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich