Therapeutic Targets of the TNF Superfamily (eBook)

Iqbal S. Grewal (Herausgeber)

eBook Download: PDF
2009 | 2009
XVII, 220 Seiten
Springer New York (Verlag)
978-0-387-89520-8 (ISBN)

Lese- und Medienproben

Therapeutic Targets of the TNF Superfamily -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Tumor necrosis factor (TNF) superfamily is a rapidly growing family of cytokines that interacts with a corresponding superfamily of receptors. Liga- receptor interactions of this superfamily are involved in numerous biological processes ranging from hematopoiesis to pleiotropic cellular responses, including activation, proliferation, differentiation, and apoptosis. The particular response depends on the receptor, the cell type, and the concurrent signals received by the cell. Worldwide interest in the TNF field surged dramatically early in 1984 with the cloning and defining of the profound cellular effects of the first member of this family, TNF . Subsequently, the major influence of TNF on the development and functioning of the immune system was established. Today, over 20 human TNF ligands and their more than 30 corresponding receptors have been identified. Few receptors still remain orphans. What has emerged over the years is that most TNF ligands bind to one distinct receptor and some of the TNF ligands are able to bind to multiple TNF receptors, explaining to some extent the apparent disparity in the number of TNF receptors and ligands. Yet, in spite of some redundancy in TNF ligand/receptor interactions, it is clear that in vivo spatial, temporal, and indeed cell- and tissue-specific expression of both ligands and their receptors are important factors in determining the precise nature of cellular, physiological and pathological processes they control. TNF superfamily has been the most highly investigated area of basic medical research for over two decades.

Iqbal S. Grewal, PhD is well-known in the field of T cell co-stimulation and autoimmunity and has extensively investigated several members of the TNF superfamily and molecules important for lymphocyte co-stimulation. His research has focused on the basic molecular and cellular processes to determine the biological roles of these molecules in normal physiology and immunity and their potential utility as agents or targets for the treatment of autoimmune diseases and cancers. His experience in discovering and developing innovative protein-based biotherapeutics in many disease areas has translated some of his findings into key drug candidates for the treatment of autoimmune disease and cancers.

Dr Grewal currently holds the position of Vice President of Preclinical Therapeutics at Seattle Genetics in Bothell, Washington. He is responsible for preclinical translational research functions in support of the development of monoclonal antibodies and antibody-drug conjugates as therapeutics in the areas of autoimmunity and oncology. Before joining Seattle Genetics, Dr Grewal performed drug discovery research and preclinical development at Genentech in South San Francisco, California where he identified and validated several novel molecules as therapeutic candidates in oncology and autoimmune disease. Prior to Genentech, Dr Grewal worked at Yale University School of Medicine. Before that, he held various research positions at the University of California, Los Angeles (UCLA). Dr Grewal has presented his work at both national and international meetings, as well as published over 100 scientific publications, 75 abstracts, 60 patent applications. He is a fellow of the Royal College of Pathologists, London and member of several distinguished societies. Dr Grewal holds a PhD in Immunology from UCLA and completed his post-doctoral fellowship at Howard Hughes Medical Institute at Yale University School of Medicine.


Tumor necrosis factor (TNF) superfamily is a rapidly growing family of cytokines that interacts with a corresponding superfamily of receptors. Liga- receptor interactions of this superfamily are involved in numerous biological processes ranging from hematopoiesis to pleiotropic cellular responses, including activation, proliferation, differentiation, and apoptosis. The particular response depends on the receptor, the cell type, and the concurrent signals received by the cell. Worldwide interest in the TNF field surged dramatically early in 1984 with the cloning and defining of the profound cellular effects of the first member of this family, TNF . Subsequently, the major influence of TNF on the development and functioning of the immune system was established. Today, over 20 human TNF ligands and their more than 30 corresponding receptors have been identified. Few receptors still remain orphans. What has emerged over the years is that most TNF ligands bind to one distinct receptor and some of the TNF ligands are able to bind to multiple TNF receptors, explaining to some extent the apparent disparity in the number of TNF receptors and ligands. Yet, in spite of some redundancy in TNF ligand/receptor interactions, it is clear that in vivo spatial, temporal, and indeed cell- and tissue-specific expression of both ligands and their receptors are important factors in determining the precise nature of cellular, physiological and pathological processes they control. TNF superfamily has been the most highly investigated area of basic medical research for over two decades.

Iqbal S. Grewal, PhD is well-known in the field of T cell co-stimulation and autoimmunity and has extensively investigated several members of the TNF superfamily and molecules important for lymphocyte co-stimulation. His research has focused on the basic molecular and cellular processes to determine the biological roles of these molecules in normal physiology and immunity and their potential utility as agents or targets for the treatment of autoimmune diseases and cancers. His experience in discovering and developing innovative protein-based biotherapeutics in many disease areas has translated some of his findings into key drug candidates for the treatment of autoimmune disease and cancers. Dr Grewal currently holds the position of Vice President of Preclinical Therapeutics at Seattle Genetics in Bothell, Washington. He is responsible for preclinical translational research functions in support of the development of monoclonal antibodies and antibody-drug conjugates as therapeutics in the areas of autoimmunity and oncology. Before joining Seattle Genetics, Dr Grewal performed drug discovery research and preclinical development at Genentech in South San Francisco, California where he identified and validated several novel molecules as therapeutic candidates in oncology and autoimmune disease. Prior to Genentech, Dr Grewal worked at Yale University School of Medicine. Before that, he held various research positions at the University of California, Los Angeles (UCLA). Dr Grewal has presented his work at both national and international meetings, as well as published over 100 scientific publications, 75 abstracts, 60 patent applications. He is a fellow of the Royal College of Pathologists, London and member of several distinguished societies. Dr Grewal holds a PhD in Immunology from UCLA and completed his post-doctoral fellowship at Howard Hughes Medical Institute at Yale University School of Medicine.

PREFACE 6
ABOUT THE EDITOR... 8
PARTICIPANTS 9
CONTENTS 12
Overview of TNF Superfamily:A Chest Full of Potential Therapeutic Targets 17
Therapeutic Interventions Targeting CD40L ( CD154) and CD40: The Opportunities and Challenges 24
Targeting TNF for Treatment of Cancer and Autoimmunity 53
Targeting of BAFF and APRIL for Autoimmunity and Oncology 68
The Role of FasL and Fas in Health and Disease 80
OX40 ( CD134) and OX40L 110
Targeting CD70 for Human Therapeutic Use 124
4- 1BB as a Therapeutic Target for Human Disease 136
RANK( L) as a Key Target for Controlling Bone Loss 146
Targeting the LIGHT- HVEM Pathway 162
GITR: A Modulator of Immune Response and Inflammation 172
Targeting CD30/ CD30L in Oncology and Autoimmune and Inflammatory Diseases 190
Tumor Necrosis Factor Receptor Superfamily Member 21: TNFR-Related Death Receptor-6, DR6 202
TRAIL and Other TRAIL Receptor Agonists as Novel Cancer Therapeutics 211
Therapeutic Potential of VEGI/TL1A in Autoimmunity and Cancer 223
Index 232

Erscheint lt. Verlag 17.9.2009
Reihe/Serie Advances in Experimental Medicine and Biology
Zusatzinfo XVII, 220 p.
Verlagsort New York
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Studium Querschnittsbereiche Infektiologie / Immunologie
Schlagworte Advances • Antigen • autoimmune disease • Biology • Grewal • Medicine • superfamily • target • Therapeutic • TNF
ISBN-10 0-387-89520-5 / 0387895205
ISBN-13 978-0-387-89520-8 / 9780387895208
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
64,99
Skript 7 Enzyme; Vitamine; Organstoffwechsel; Molekularbiologie

von Endspurt Vorklinik

eBook Download (2023)
Georg Thieme Verlag KG
22,99