Aortic Root Surgery (eBook)
XXIV, 616 Seiten
Steinkopff (Verlag)
978-3-7985-1869-8 (ISBN)
Preface 6
Table of Contents 9
Authors 16
Imagingof the aortic root 21
Perioperative imaging for assessing aortic and mitral valve diseases and surgical procedures 22
History 22
Application in cardiac surgery 23
Indications for iTEE 23
Why iTEE before cardiopulmonary bypass? 23
iTEE in patients undergoing mitral valve surgery 24
iTEE evaluation during transapical aortic valve replacement 26
The future 29
Conclusion 29
References 29
Innovations in aortic valve surgery 30
The aortic root 31
Introduction 31
The anatomic units of the aortic root 31
The aortic annulus 35
The semilunar leaflets 36
The aortic sinuses of Valsalva 36
The commissures 37
Interleaflet triangle (the trigonum) 37
The sinotubular junction 37
The coronary arteries 37
Comments 38
Acknowledgment. 38
References 38
Percutaneous transluminal aortic valve replacement: The CoreValve prosthesis 40
History of percutaneous aortic valve replacement 40
Patient population 41
Device description and procedure 41
Medication 46
Outcomes following implantation 46
Conclusions 48
References 48
Transapical aortic valve implantation – a truly minimally invasive option for high-risk patients 50
Introduction 50
The concept of transcatheter aortic valve impIantation 50
Transcatheter aortic valve prostheses 51
Patient selection 52
Risk assessment 52
Anatomical considerations 52
Transapical or transfemoral AVI? 53
TA-AVI – setup 53
The OR 53
The team approach 54
TA-AVI – the procedure step by step 54
Anesthesia 54
The “safety net” 54
Sizing and valve preparation 55
Surgical access to the left ventricular apex 55
Positioning of the fluoroscopic system 55
Hemodynamic management 56
Valvuloplasty and valve deployment 56
How to achieve optimal outcome 59
Postoperative care 60
Current results 61
References 62
From minimally invasive to percutaneous aortic valve replacement 64
Introduction 64
Indications 65
Techniques of minimally invasive aortic valve surgery 65
Results after minimally invasive aortic valve surgery 66
Percutaneous aortic valve replacement 68
Results after percutaneous aortic valve replacement 70
Conclusions 71
References 72
Sutureless equine aortic valve replacement 75
Introduction 75
Operative technique 76
Clinical experience 79
Comments 79
References 80
The Ross operation: Aortic valve and root replacement with pulmonary autograft 82
Pulmonary autograft or aortic allograft for surgical treatment of activeinfective aortic valve endocarditis: a review of the literature 83
Results 84
The pulmonary autograft in the aortic position 84
Aortic allograft in the aortic position 85
Aortic root replacement 85
Freehand subcoronary aortic valve replacement 86
Comments 86
Acknowledgment. 88
References 88
The Ross operation: two decades of clinical experience 90
The German-Dutch Ross registry 92
Results 94
Discussion 97
Conclusions 99
References 100
Aortic valve repair and valve sparing root procedures 102
The bicuspid aortic valve 103
Etiology 103
Prevalence 104
Diagnosis 104
Classification 105
Complications and treatment 108
Valve-related complications 108
Aortic complications 111
Summary and outlook 112
References 112
From dynamic anatomy to conservative aortic valve surgery: the tale of the ring 116
Introduction 116
Anatomy of the aortic root 116
Descriptive anatomy 116
The aortic valve apparatus: a dynamic structure 118
Echocardiographic anatomy of the normal aortic root 120
Anatomy of dystrophic aortic roots 121
Surgical treatment for aortic root aneurysm 121
Composite valve and graft replacement 121
Aortic valve-sparing procedures 122
In vitro studies 123
In vivo studies 123
Repair of cusp prolapse and bicuspid valve 134
Lesional classification for aortic insufficiencies 136
Conservative aortic valve surgery versus valve replacement:what do we know? 136
Conclusions 140
References 140
Yacoub/David techniques for aortic root operation: success and failures 147
Techniques of valve-sparing aortic root replacement 147
Methods 148
Results 149
Discussion 152
Conclusions 156
References 156
Aortic annuloplasty 158
Introduction 158
The normal aortic annulus and root 158
The diseased aortic annulus and root 163
Aging 163
“Annuloaortic ectasia”/Marfan syndrome 164
Bicuspid aortic valve 165
Geometric mismatch without annuloplasty 166
Reduction aortic annuloplasty 168
Annuloplasty math 169
Suturing techniques 169
Subcommissural plication 170
Intertrigonal plication 171
Circumferential plication 172
Resection 175
External buttress 176
Augmentation annuloplasty 176
Aortic-mitral curtain enlargement procedures 177
Ventricular septum enlargement procedures (aortoventriculoplasty) 180
Conclusion 184
References 184
Correction of aortic valve incompetence combined with ascending aortic aneurysm by relocation of the aortic valve plane through a short-length aortic graft replacement 192
Introduction 192
Pathophysiological considerations 192
Surgical technique 193
Routine investigations 195
Patients 195
Comments 196
References 198
Using BioGlue to achieve hemostasis in aortic root surgery 199
Rationale for using BioGlue 199
Balancing potential benefits with risks 199
Technical aspects of using BioGlue during aortic root repair 201
Summary 203
Acknowledgments. 203
References 203
Endocarditis 206
Challenges in the surgical management of infective endocarditis 207
Introduction 207
Appendix 1 208
Current challenges in infective endocarditis 209
Conceptual challenges 209
Timing 210
Special populations 211
Anatomical and technical issues 213
Risk stratification 215
Conclusions 216
References 216
Clinical results of the Shelhigh® stentless bioprosthesis in patients with active infective endocarditis: 222
Introduction 222
Patients and methods 223
Patient population 223
Indications for surgery and operations performed 225
Definition of active infective endocarditis 225
The Shelhigh® SuperStentless bioprosthesis 225
Statistical analysis 226
Results 227
Overall survival and survival in relation to surgical urgency 227
Survival in relation to valve position and comparison of single versus double valve replacement 228
Survival in relation to abscess formation 228
Reinfection after Shelhigh® implantation 229
Discussion 230
Survival and surgical urgency 230
Survival and abscess formation 231
Clinical results of Shelhigh® bioprostheses 231
Study limitations 232
Conclusions 232
Acknowledgments. 232
Conflict of interest. 232
References 232
Double valve endocarditis and evolving paraannular abscess formation 235
Introduction 235
Types of endocarditis 236
Native valve and prosthetic endocarditis 236
Prosthetic endocarditis 236
Simple and destructive forms of endocarditis 237
Paravalvular abscess as the main sign of the destructive form of endocarditis 238
Echocardiographic definition of abscess 239
Abscess classification according to stage of development 241
Extension of infection from the aortic area 241
Double valve disease 242
Asymptomatic destruction of the heart structures after successful medical treatment of AIE 243
Primary mitral valve endocarditis 244
Extension to the right side 245
Three-dimensional echocardiography 245
Conclusions 248
Acknowledgment. 249
References 249
Aortic root abscess: reconstruction of the left ventricular outflow tract and allograft aortic valve and root replacement 255
Introduction 255
Methods 256
The aortic root 259
Pre- and postoperative monitoring and diagnostics 259
Current indications for allograft valve and root replacement 261
Surgical techniques 261
Implantation techniques 263
Lower (proximal) suture line. 263
Distal suture line. 264
Freehand subcoronary aortic valve replacement 264
Data collection and postoperative follow-up 266
Statistical methods 266
Results 267
Hospital mortality 267
Late mortality 268
Early and late complications 269
Discussion 275
Inferences 280
Recommendations for cardiologists, surgeons, and patients 280
Conclusions 281
Acknowledgments. 281
References 281
Implantation techniques of freehand subcoronary aortic valve and root replacement with a cryopreserved allograft for aortic root abscess 286
Historical background 286
Surgical management of aortic root abscess 286
Debridement and local disinfection of the aortic root 287
Pericardial reconstruction of the left ventricular outflow tract 287
Aortic root replacement and reimplantation of the coronary arteries 290
Freehand subcoronary aortic valve replacement 292
Comments 294
References 298
Surgery for atrial fibrillation 300
Cryoablation for the treatment of atrial fibrillation in patients undergoing minimally invasive mitral valve surgery 301
Introduction 301
Surgical treatment options 301
Minimal invasive MV surgery and cryoablation: current methods and results at the Leipzig Heart Center 304
Surgical technique and perioperative management 304
Results – perioperative 306
Long-term results 307
Comment 308
References 310
Minimally invasive endoscopic ablation on the beating heart in patients with lone atrial fibrillation 312
Treatment of atrial fibrillation 313
Current surgical ablation practice 313
Totally endoscopic ablation 314
Surgical procedure 316
Ablation 317
Postoperative management 319
Follow-up 319
Future role of surgical ablation therapy for lone atrial fibrillation 320
References 320
Hemodynamice valuation of the bioprosthetic aortic valves 321
Evaluation of bioprosthetic valve performance as a function of geometric orifice area and space efficiency – 322
Introduction 322
The common approach to bioprosthetic valve evaluation 322
Effective orifice area 323
Patient-prosthesis mismatch and effective orifice area index 325
Geometric orifice area – a valid alternative 327
Comparison of seven commercially available bioprosthetic valves on the basis of geometric orifice area and space efficiency 328
Materials and methods 328
Results 332
Geometric orifice areas 332
Space efficiency 336
An additional observation – leaflet flutter 339
Discussion 341
Study limitations 344
Conclusions 345
References 345
Long-term results of biological valves 347
Stentless bioprostheses 348
Stented and stentless aortic bioprostheses: competitive or complimentary? 348
References 351
Edwards Prima Plus Stentless Bioprosthesis: long-term clinical and hemodynamic results 353
Introduction 353
Materials and methods 353
Clinical data – patients 353
Surgical technique and medical management 354
Follow-up 354
Statistical analysis 355
Results 356
Operative data 356
Survival 356
Late adverse events (Table 3) 357
Embolic events. 358
Endocarditis. 358
Valve reoperation. 358
Late New York Heart Association functional classification. 358
Hemodynamic data. 359
Discussion 359
References 361
The Cryo-Life O’Brien stentless valve: 1991–2008 363
The study valve 363
Patients 363
Operative technique 364
Results with the original valve manufactured at the Cryo-Life facility 365
Patient survival 365
Late mortality 365
Valve-related complications (Table 3) 366
Nonstructural dysfunction. 366
Valve thrombosis 367
Hemorrhagic and embolic complications. 367
Operated valvular endocarditis. 367
Structural valve deterioration. 367
Reoperations. 368
Hemodynamic data 368
Results with the second-generation valve manufactured at the Labcor facility in Brazil and sterilized at Cryo-Life 369
Comment 369
Conclusion 371
References 372
Medtronic stentless Freestyle® porcine aortic valve replacement 373
Introduction: stentless biological valves 373
The Freestyle® bioprosthesis: surgical technique 374
Subcoronary technique 374
Total root technique 375
The Freestyle® bioprosthesis: hemodynamic outcome 376
Decrease in gradients postoperatively 376
Valve prosthesis-patient mismatch 376
Technical issues of subcoronary technique and the impact of the surgeons on hemodynamic outcome 377
Subcoronary versus total root implantation technique * 382
The Freestyle® bioprosthesis: valve related morbidity and mortality * 385
The Freestyle® bioprosthesis: special indications 387
Concomitant replacement of the ascending aorta 387
Octogenarians 388
Young patients 389
References 389
The ATS 3 f Aortic Bioprosthesis 393
Introduction 393
Development and preclinical evaluation of the ATS 3 f Aortic Bioprosthesis 395
The choice of equine pericardium 395
Transvalvular flow dynamics 395
Stress distribution on the valve leaflets 396
In vitro hemodynamic performance 396
In vitro durability tests 398
Clinical performance and results 400
Clinical hemodynamic performance 400
Clinical flow dynamics and aortic root preservation 400
Summary 401
References 402
The Vascutek Elan stentless porcine prosthesis – the Glasgow experience 403
Introduction 403
Materials and methods 404
Study population 404
Echocardiography 404
Surgical technique 405
Statistical analysis 406
Results 406
Discussion 409
Limitations of the study 411
Conclusions 411
References 411
Sorin pericardial valves Operative technique and early results of biological valves 413
Introduction 413
Material and methods 414
Operative technique Freedom 415
Operative technique Solo 416
Results 419
Discussion 421
References 422
Stented bioprostheses 424
The changing role of pericardial tissue in biological valve surgery: 22 years’ experience with the Sorin Mitroflow stented pericardial valve 424
Background 424
Patients and methods 425
Aortic root disease and morphology 427
Design and characteristics of the Mitroflow pericardial bioprosthesis 427
Surgical procedure 428
Follow-up 429
Postoperative anticoagulation 431
Statistical analysis 433
Results 433
Early mortality 433
Long-term survival 433
Postoperative hemodynamic profile 435
Reoperation 436
Structural valve deterioration 436
Nonstructural valve deterioration 439
Prosthetic valve endocarditis 440
Hemorrhage 440
Thromboebolism 441
Discussion 441
Inferences 444
Conclusion 444
Acknowledgments. 444
References 444
20 years’ durability of Carpentier-Edwards Perimount stented pericardial aortic valve 448
Clinical material and methods 448
Patients 448
Surgical technique 449
Anticoagulation 449
Follow-up 449
Data analysis 450
Results 450
Follow-up 450
Patient survival 450
Clinical status 451
Valve-related complications 451
Valve-related death 451
Thromboembolism 452
Bleeding events 452
Endocarditis 452
Hemolysis 452
Reoperation 452
Structural valve deterioration 453
Hemodynamics 454
Discussion 454
References 457
Twenty-year experience with the St. Jude Medical Biocor bioprosthesis in the aortic position 459
Material and methods 459
Patients 459
Follow-up 459
Valve selection 460
Operative techniques 460
Anticoagulation management 460
Outcomes 460
Statistical analysis 460
Results 461
Patient population 461
Patient survival 461
Hemorrhage 462
Endocarditis 462
Structural valve deterioration 462
Nonstructural valve dysfunction 463
Reoperation 463
Thromboembolism 463
Comment 464
Survival 464
Valve-related mortality 465
Reoperation 465
Structural valve deterioration 465
Reoperations due to SVD 466
Hemorrhage 466
Other complications 466
Influence of patient age on outcome 467
Limitations of the study 467
Conclusion 467
Acknowledgments. 468
References 468
20-Year durability of bioprostheses in the aortic position 470
References 476
Clinical results including hemodynamic performance of the Medtronic Mosaic porcine bioprosthesis up to ten years * 477
Patients and methods 478
Patient population and study design 478
Surgical technique 480
Postoperative anticoagulation 480
Follow-up 480
Statistical analysis 480
Results 481
Echocadiography 481
Cardiac rhythm 482
Adverse events 483
Structural valve deterioration (SVD) 485
Thrombosed valves 485
Thromboembolism 486
Bleeding 486
Paravalvular leak 487
Prosthesis mismatch 487
Endocarditis 487
Explants 487
Mortality 488
Discussion 489
Conclusion 491
References 492
Aortic root replacement with the BioValsalva prosthesis 494
Introduction 494
The BioValsalva conduit 494
Clinical experience 496
Patients’ characteristics 496
Operative technique 496
Results 498
Inhospital outcomes 498
Hemodynamic characteristics and follow-up 501
Discussion 501
Conclusions 503
Disclosures and freedom of investigation. 503
References 503
Valve replacement in renal dialysis patients: bioprostheses versus mechanical prostheses 505
References 509
Replacement of bioprostheses after structural valve deterioration 510
Introduction 510
Methods 511
Operation technique 514
Preoperative imaging 514
Reentry sternotomy 515
Statistical analysis 515
Results 516
Valve re-replacement with a second 516
Valve re-replacement with mechanical prosthesis after bioprosthetic structural valve deterioration 516
Hospital survival 517
Hospital mortality by period: 2002–2007. 517
Hospital mortality by period: 1986–2007. 517
Long-term survival 518
Comments 519
Conclusions 523
Acknowledgments. 524
References 524
Predictors of patient’s outcome 527
Predicted outcomes after aortic valve replacement in octogenarians with aortic stenosis 528
Introduction 528
Methods 528
Study patients 528
Statistics 529
Results 530
Discussion 532
Conclusion 533
References 534
Predicted patient outcome after bioprosthetic AVR and the Ross operation 535
Determinants of survival after AVR 535
Predicted patient outcome after AVR 537
Stented bioprostheses 538
Stentless bioprostheses 538
Allografts 539
Predicted patient outcome after the Ross operation in young adults 540
Summary and conclusions 541
References 542
Anticoagulation 544
Anticoagulation and self-management of INR: mid-term results 545
Anticoagulation and general complications 545
Patient autonomy 546
Self-management 547
Telemedical monitoring 548
Low-dose anticoagulation 549
Conclusion 552
References 552
Tissue engineering 553
Biomatrix-polymer hybrid material for heart valve tissue engineering 554
Heart valve tissue engineering 554
Hybrid tissue fabrication 555
Decellularization process 555
Polymer coating 556
In vitro testing of hybrid valve tissue 557
Toxicity and cell proliferation 557
Hemocompatibility 558
Mechanical tissue properties 558
Suture retention strength 559
Leaflet testing 559
Valve testing 560
In vivo biocompatibility testing 561
Large animal testing 562
Interpretation 563
References 564
Standards for the in vitro fabrication of heart valves using human umbilical cord cells 567
Background 567
Scaffold materials 568
Natural scaffolds 568
Biological scaffolds 568
Synthetic scaffolds 569
Cell sources 570
Cell seeding and in vitro conditioning 571
Conclusion and perspectives 573
References 574
Tissue engineering with a decellularized valve matrix 577
References 581
Regularatory issues on tissue valves 582
Human tissues for cardiovascular surgery: regulatory requirements 583
Introduction 583
United States 583
European Union 585
Decellularized cardiac tissues 587
References 588
Concluding remarks 590
Conclusion 591
Acknowledgments 592
Atlas of biological valves 593
Subject index 601
Erscheint lt. Verlag | 1.3.2010 |
---|---|
Zusatzinfo | XXIV, 616 p. |
Verlagsort | Heidelberg |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Chirurgie |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Innere Medizin | |
Schlagworte | Ablation • anatomy • Aneurysm • Atrial Fibrillation • Cardiovascular • heart • Stent |
ISBN-10 | 3-7985-1869-6 / 3798518696 |
ISBN-13 | 978-3-7985-1869-8 / 9783798518698 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich