Parallel Imaging in Clinical MR Applications (eBook)

eBook Download: PDF
2007 | 2007
XII, 564 Seiten
Springer Berlin (Verlag)
978-3-540-68879-2 (ISBN)

Lese- und Medienproben

Parallel Imaging in Clinical MR Applications -
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the first in-depth introduction to parallel imaging techniques and, in particular, to the application of parallel imaging in clinical MRI. It will provide readers with a broader understanding of the fundamental principles of parallel imaging and of the advantages and disadvantages of specific MR protocols in clinical applications in all parts of the body at 1.5 and 3 Tesla.

Foreword 6
Part I: Basic Principles of Parallel-Imaging Techniques 15
MRI from k-Space to Parallel Imaging 16
Basic Reconstruction Algorithms for Parallel Imaging 32
The g-Factor and Coil Design 50
Measurement of Signal-to-Noise Ratio and Parallel Imaging 62
Special Applications of Parallel Imaging 76
Parallel-Imaging Reconstruction of Arbitrary-k-Space-Sampling Data 84
Complementary Techniques for Accelerated Imaging 104
Part II: Sequence Design for (Auto-Calibrated) Parallel Imaging 118
Measurement of Coil Sensitivity Pro.les 120
Conventional Spin-Echo and Gradient-Echo Pulse Sequences 126
Single-Shot Pulse Sequences 132
Fast Sequences for Dynamic and Time-Resolved Imaging 140
The Development of TSENSE 154
Design of Dedicated MRI Systems for Parallel Imaging 168
Dedicated Coil Systems from Head to Toe 174
Design of Parallel-Imaging Protocols 182
General Advantages of Parallel Imaging 186
Limitations of Parallel Imaging 190
Part IV: Clinical Applications: Imaging of Morphology 194
High-Resolution Imaging of the Brain 196
High-Resolution Imaging of the Skull Base and Larynx 212
Lung Imaging 222
Liver Imaging 232
High-Resolution Imaging of the Biliary Tree and the Pancreas 246
Parallel Imaging in Inflammatory Bowel Disease 260
Musculoskeletal Imaging: Knee and Shoulder 268
Advanced Methods of Fat Suppression and Parallel Imaging 282
Part V: Clinical Applications: Angiography 297
MRA of Brain Vessels 298
MRA of the Carotid Arteries 304
MRA of the Pulmonary Circulation 320
MRA of the Renal Arteries 332
Peripheral MR Angiography 342
Pediatric Congenital Cardiovascular Disease 362
High-Resolution Whole-Body MRA 368
Part VI: Clinical Applications: Function 382
Imaging of CNS Diffusion and Perfusion 384
Diffusion Tensor Imaging of the Brain 392
Imaging of Cardiac Function 406
Imaging of Cardiac Perfusion 420
Imaging of Pulmonary Perfusion 430
Oxygen-Enhanced Imaging of the Lung 442
Imaging of Renal Perfusion 454
Part VII:Comprehensive Protocols 463
Cardiovascular Screening 464
Tumor Staging 474
Imaging of Bronchial Carcinoma 484
Imaging of Pulmonary Hypertension 494
Part VIII: Future Developments 509
New Coil Systems for 510
Highly Parallel MR Acquisition Strategies 510
Parallel-Excitation Techniques for 524
Ultra-High-Field MRI 524
Future Software Developments 536
Future Imaging Protocols 546
Subject Index 556

18 High-Resolution Imaging of the Brain (p. 183-184)

Roland Bammer and Scott Nagle

CONTENTS
18.1 Introduction 183
18.2 Structural MRI 185
18.3 MR Angiography 190
18.4 Quantitative/Functional MRI 193
18.5 Pediatric MRI 196
18.6 Conclusion 196
References 197

18.1 Introduction

Resolution enhancement in MRI is of great potential for increased diagnostic accuracy in brain and spine imaging. With the advent of high-. eld systems increased signal-to-noise ratio (SNR) affords smaller voxel sizes, but overall scan time is still a limiting factor for high-resolution brain imaging in a clinical setting. Parallel imaging is of great bene. t since it allows us to achieve high-resolution 2D and 3D acquisitions in clinically acceptable time frames. In addition, parallel imaging can also diminish the amount of image blurring and geometric distortions leading to obvious resolution and quality improvements without altering the acquisition matrix size.

This chapter critically addresses the general advantages and limitations of high-resolution neuroimaging in concert with the additional capacity provided by parallel imaging. Specifically, the role of parallel imaging in high-resolution structural MRI, magnetic resonance angiography, and functional MRI in the broader sense (i.e., diffusion and perfusion MRI as well as classical functional MRI) are discussed. The improved scanning efficiency of parallel imaging methods can be applied in a number of fruitful ways in the . eld of brain MR imaging. As described in the . rst part this book, these parallel-imaging strategies cleverly incorporate the spatially varying sensitivity pro. les of multiple-channel receive coils in order to reduce the number of k-space measurements necessary to reconstruct an image (Hutchinson and Raff 1988, Kwiat et al. 1991, Sodickson and Manning 1977, Pruessmann et al. 1999). In conventional Cartesian k-space sampling schemes, this is typically realized by decreasing the number of phaseencoded steps. In cases of high SNR, the reduction of phase-encoded steps by a factor R (accompanied by its obligatory R decrease in SNR Pruessman et al. 1999) can be used to increase either spatial resolution or temporal resolution. These advantages are not mutually exclusive and it depends on the specific scan protocol whether one favors more rapid scanning or higher resolution. In addition, the artefact and blurring associated with several multiple-echo or long-readout sequences can be mitigated by parallel- imaging techniques (cf. Chap. 10).

Increasing the spatial resolution may allow the detection of smaller lesions, may better characterize the internal structure of larger lesions (e.g., calcification, blood products, demyelination, cystic components, etc.), and may better delineate the lesion boundaries with respect to normal anatomy, improving the accurate localization of a lesion (especially important in the prepontine, suprasellar, cerebellopontine angle, cavernous sinus, orbital, and Meckel’s cave regions). The imaging of white matter disease, stroke, neoplasm, and vascular disease could all ben e. t from these advantages. Pediatric and neonatal brain imaging also demands fast, high-resolution imaging because of the relatively small brain size and the dif. culties in keeping a child still throughout the scan. Similar considerations apply also for imaging the spinal cord. Three-dimensional spoiled gradient- echo sequences, used in the evaluation of mesial temporal sclerosis in the work-up of seizures, tumor treatment planning, and voxel-based morphometry in neurodegenerative disorders, could benefit from the use of parallel imaging in both phase-encoded directions to further increase resolution without increasing scan time (Weiger et al. 2002a).

Conversely, shortened scan times alone can increase patient throughput, resulting in obvious operational and patient comfort improvements. Simply decreasing scan time reduces the risk of patient motion degrading a study. A number of other creative methods for further reducing motion artefacts through the use of parallel imaging have been proposed and demonstrated (Bammer et al. 2004, Kuhara and Ishihara 2000, Bydder et al. 2002, 2003, Atkinson et al. 2004).

Erscheint lt. Verlag 11.1.2007
Reihe/Serie Diagnostic Imaging
Medical Radiology
Vorwort A.L. Baert
Zusatzinfo XII, 564 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Innere Medizin
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Kernspintomographie (MRT)
Studium 2. Studienabschnitt (Klinik) Anamnese / Körperliche Untersuchung
Schlagworte Angiography • brain • carcinoma • cardiac function • Cardiovascular • clinical radiology • fast magnetic resonance imaging techniques • Hypertension • Magnetic Resonance • Magnetic Resonance Imaging • Magnetic Resonance Imaging (MRI) • MR Angiography • pancreas • parallel acquisition techniques • parallel imaging • Screening • Staging • Tumor • vascular disease
ISBN-10 3-540-68879-X / 354068879X
ISBN-13 978-3-540-68879-2 / 9783540688792
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 75,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen, Experimentaldesign und Datenanalyse

von Stefan Pollmann; Tömme Noesselt

eBook Download (2024)
Springer (Verlag)
26,99