Soft Computing for Data Mining Applications
Springer Berlin (Verlag)
978-3-642-00192-5 (ISBN)
Self Adaptive Genetic Algorithms.- Characteristic Amplification Based Genetic Algorithms.- Dynamic Association Rule Mining Using Genetic Algorithms.- Evolutionary Approach for XML Data Mining.- Soft Computing Based CBIR System.- Fuzzy Based Neuro - Genetic Algorithm for Stock Market Prediction.- Data Mining Based Query Processing Using Rough Sets and GAs.- Hashing the Web for Better Reorganization.- Algorithms for Web Personalization.- Classifying Clustered Webpages for Effective Personalization.- Mining Top - k Ranked Webpages Using SA and GA.- A Semantic Approach for Mining Biological Databases.- Probabilistic Approach for DNA Compression.- Non-repetitive DNA Compression Using Memoization.- Exploring Structurally Similar Protein Sequence Motifs.- Matching Techniques in Genomic Sequences for Motif Searching.- Merge Based Genetic Algorithm for Motif Discovery.
Erscheint lt. Verlag | 11.3.2009 |
---|---|
Reihe/Serie | Studies in Computational Intelligence |
Zusatzinfo | XXII, 341 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 685 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Informatik ► Weitere Themen ► CAD-Programme | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
Schlagworte | algorithms • Bioinformatics • Computational Intelligence • Data Mining • Evolution • Genetic Algorithm • Genome • learning • Racter • Soft Computing • Web Intelligence |
ISBN-10 | 3-642-00192-0 / 3642001920 |
ISBN-13 | 978-3-642-00192-5 / 9783642001925 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich