Mathematik für das Bachelorstudium I

Grundlagen, lineare Algebra und Analysis
Buch | Softcover
XIV, 306 Seiten
2009 | 2009
Spektrum Akademischer Verlag
978-3-8274-2067-1 (ISBN)

Lese- und Medienproben

Mathematik für das Bachelorstudium I - Matthias Plaue, Mike Scherfner
27,99 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Dies ist ein Buch über die Mathematik, welches insbesondere die neuen Anforderungen des Bachelorstudiums sinnvoll bedient. Es behandelt die Grundlagen und danach den Stoff der linearen Algebra und eindimensionalen Analysis. Damit deckt es den Stoff ab, der an Universitäten wesentlich im ersten Semester behandelt wird. Dabei wenden wir uns an Physiker, Mathematiker sowie ambitionierte Lehramtskandidaten und Ingenieure.

Das Buch fördert sowohl das Verständnis als auch das konzentrierte Lernen für Klausuren und mündliche Prüfungen.

Auf einen Blick:


Klarer Stil, klare Sprache, klare Struktur.
Zahlreiche Erläuterungen.
Zu jedem Thema wird gesondert ein informativer Ein- und Ausblick geliefert.
Grafiken und viele Beispiele helfen beim Verstehen.
Fragen zum Selbsttest unterstützen zusätzlich beim Lernen.
Aufgaben mit vollständigen Lösungen dienen der Vertiefung und Vorbereitung auf Prüfungen jeglicher Art.

Matthias Plaue arbeitet an der TU Berlin an zahlreichen Projekten, welche von der Forschung in der Differenzialgeometrie und Bildverarbeitung bis zur Entwicklung von Lehrkonzepten reichen.Mike Scherfner forscht auf den Gebieten der Differenzialgeometrie und mathematischen Physik, ist Leiter verschiedener Projekte am Institut für Mathematik der TU Berlin und hält dort regelmäßig erfolgreiche Vorlesungen.

Einleitung
I Grundlagen
1 Elementare Logik und Mengenlehre
1.1 Einblick
1.2 Aussagen, Junktoren und Wahrheitstafeln
1.3 Sätze der Aussagenlogik
1.4 Prädikate und Quantoren
1.5 Mengen
1.6 Zahlen und Intervalle
1.7 Eigenschaften und Verknüpfungen von Mengen
1.8 Ausblick
1.9 Selbsttest
2 Definition, Satz, Beweis und mehr
2.1 Einblick
2.2 Grundlegendste Elemente bei der Formulierung von Mathematik
2.3 Formen des Beweisens
2.3.1 Direkte und indirekte Beweise
2.3.2 Konstruktive und nicht-konstruktive Beweise
2.3.3 Der Ringschluss
2.3.4 Das Gegenbeispiel
2.3.5 Vollständige Induktion
2.4 Ausblick
2.5 Selbsttest
3 Abbildungen
3.1 Einblick
3.2 Grundlegendes zu Abbildungen
3.3 Injektivität, Surjektivität, Bijektivität
3.4 Die Komposition von Abbildungen
3.5 Ausblick
3.6 Selbsttest
4 Körper und komplexe Zahlen
4.1 Einblick
4.2 Körper
4.3 Die komplexen Zahlen
4.4 Ausblick
4.5 Selbsttest
Aufgaben zu den mathematischen Grundlagen
II Lineare Algebra
5 Vektorräume
5.1 Einblick
5.2 Grundlegendes zu Vektorräumen
5.3 Ausblick
5.4 Selbsttest
6 Basen und Untervektorräume
6.1 Einblick
6.2 Spann und Erzeugendensystem
6.3 Lineare Unabhängigkeit, Basis
6.4 Eindeutigkeit der Basisdarstellung, Untervektorräume
6.5 Ausblick
6.6 Selbsttest
7 Lineare Abbildungen und Dimensionssätze
7.1 Einblick
7.2 Definition und Beispiele linearer Abbildungen
7.3 Kern und Bild linearer Abbildungen
7.4 Dimensionssätze
7.5 Ausblick
7.6 Selbsttest
8Matrizen
8.1 Einblick
8.2 Die darstellende Matrix einer linearen Abbildung
8.3 Der Rang einer Matrix
8.4 Das Matrizenprodukt
8.5 Besondere Matrizen
8.6 Ausblick
8.7 Selbsttest
9 Lineare Gleichungssysteme
9.1 Einblick
9.2 Grundlegendes zu linearen Gleichungssystemen und Gauß-Algorithmus
9.3 Struktur der Lösungsmenge eines linearen Gleichungssystems
9.4 Ausblick
9.5 Selbsttest
10 Die Determinante
10.1 Einblick
10.2 Der Laplace’sche Entwicklungssatz
10.3 Berechnung von Determinanten in einfachen Fällen
10.4 Eigenschaften der Determinanten
10.5 Ausblick
10.6 Selbsttest
11 Eigenwerte und Eigenvektoren
11.1 Einblick
11.2 Eigenwert, Eigenvektor und Eigenraum
11.3 Berechnung der Eigenwerte und Eigenvektoren
11.4 Algebraische und geometrische Vielfachheit von Eigenwerten
11.5 Ausblick
11.6 Selbsttest
12 Koordinatenabbildung und Basiswechsel
12.1 Einblick
12.2 Die Koordinatenabbildung
12.3 Darstellende Matrizen und Basiswechsel
12.4 Ausblick
12.5 Selbsttest
13 Diagonalisierung
13.1 Einblick
13.2 Diagonalisierbare Matrizen
13.3 Weitere Kriterien für Diagonalisierbarkeit
13.4 Ausblick
13.5 Selbsttest
14 Normierte, euklidische und unitäre Vektorräume
14.1 Einblick
14.2 Normierte Vektorräume
14.3 Skalarprodukte
14.4 Das Gram-Schmidt’sche Orthonormalisierungsverfahren
14.5 Orthogonale Abbildungen
14.6 Ausblick
14.7 Selbsttest
Aufgaben zur linearen Algebra
III Analysis
15 Grundzüge der Analysis
15.1 Einblick
15.2 Folgen und Konvergenz
15.2.1 Rechenregeln für

Erscheint lt. Verlag 28.5.2009
Zusatzinfo XIV, 306 S.
Verlagsort Heidelberg
Sprache deutsch
Maße 155 x 235 mm
Gewicht 530 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Schlagworte Analysis • Determinanten • Eigenvektoren • Eigenwert • Höhere Mathematik • Ingenieurmathematik • Koordinaten • lineare Abbildung • Lineare Algebra • Lineare Gleichungssysteme • Lineare Unabhängigkeit • Mathematik; Handbuch/Lehrbuch (Ingenieure/Techniker) • Matrix • Matrizen • Rang einer Matrix • Skalarprodukt • Vektoren • Vektorräume
ISBN-10 3-8274-2067-9 / 3827420679
ISBN-13 978-3-8274-2067-1 / 9783827420671
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Geschichten aus der europäischen Mathematik der Neuzeit

von Heinz Klaus Strick

Buch | Softcover (2024)
Springer (Verlag)
29,99