Topics from the Theory of Numbers
Seiten
2008
|
2nd ed. 1984. Reprint 2008
Birkhauser Boston Inc (Verlag)
978-0-8176-4837-4 (ISBN)
Birkhauser Boston Inc (Verlag)
978-0-8176-4837-4 (ISBN)
The publication of Emil Grosswald's classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, the book offers the reader a diverse range of subjects to investigate.
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate, including: (1) divisibility, (2) congruences, (3) the Riemann zeta function, (4) Diophantine equations and Fermat’s conjecture, (5) the theory of partitions.
Comprehensive in nature, Topics from the Theory of Numbers is an ideal text for advanced undergraduates and graduate students alike.
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate, including: (1) divisibility, (2) congruences, (3) the Riemann zeta function, (4) Diophantine equations and Fermat’s conjecture, (5) the theory of partitions.
Comprehensive in nature, Topics from the Theory of Numbers is an ideal text for advanced undergraduates and graduate students alike.
Introduction, Historical Background, and Notations.- and Historical Background.- Introductory Remarks and Notations.- Elementary Number Theory.- Divisibility.- Congruences.- Quadratic Residues.- Arithmetical Functions.- The Theory of Partitions.- Topics from Analytic and Algebraic Number Theory.- The Distribution of Primes and the Riemann Zeta Function.- The Prime Number Theorem.- The Arithmetic of Number Fields.- Ideal Theory.- Primes in Arithmetic Progressions.- Diophantine Equations.- Fermat’s Equation.
Reihe/Serie | Modern Birkhäuser Classics |
---|---|
Zusatzinfo | XV, 335 p. |
Verlagsort | Secaucus |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-8176-4837-2 / 0817648372 |
ISBN-13 | 978-0-8176-4837-4 / 9780817648374 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €