Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties
Springer Berlin (Verlag)
978-3-540-70564-2 (ISBN)
In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0.
Preliminaries on Filtered Derived Categories and Topoi.- Weight Filtrations on Log Crystalline Cohomologies.- Weight Filtrations and Slope Filtrations on Rigid Cohomologies (Summary).
Erscheint lt. Verlag | 15.9.2008 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | X, 272 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 433 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | ; 14F40; 13K05 • cohomology • Filtered base change formula • Filtered Künneth formula • p-adic purity • p-adic weight filtration • Weight-filtered complexes |
ISBN-10 | 3-540-70564-3 / 3540705643 |
ISBN-13 | 978-3-540-70564-2 / 9783540705642 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich