Enumerative Invariants in Algebraic Geometry and String Theory
Springer Berlin (Verlag)
978-3-540-79813-2 (ISBN)
Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.
Dan Abramovich is a Professor of Mathematics at Brown University, working on Birational Geometry and Moduli Spaces.
Lectures on Gromov-Witten Invariants of Orbifolds.- Lectures on the Topological Vertex.- Floer Cohomology with Gerbes.- The Moduli Space of Curves and Gromov-Witten Theory.
Erscheint lt. Verlag | 22.8.2008 |
---|---|
Reihe/Serie | C.I.M.E. Foundation Subseries | Lecture Notes in Mathematics |
Zusatzinfo | X, 210 p. 30 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 345 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | 14H10, 14H81, 14N35, 53D40, 81T30, 81T45 • Algebra • cohomology • enumerative geometry • Gromov-Witten invariants • moduli space • orbifolds • quantum cohomology • String Theory |
ISBN-10 | 3-540-79813-7 / 3540798137 |
ISBN-13 | 978-3-540-79813-2 / 9783540798132 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich