Metalearning

Applications to Data Mining
Buch | Hardcover
XI, 176 Seiten
2008 | 2009
Springer Berlin (Verlag)
978-3-540-73262-4 (ISBN)

Lese- und Medienproben

Metalearning - Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, Ricardo Vilalta
69,50 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Metalearning: Concepts and Systems.- Metalearning for Algorithm Recommendation: an Introduction.- Development of Metalearning Systems for Algorithm Recommendation.- Extending Metalearning to Data Mining and KDD.- Extending Metalearning to Data Mining and KDD.- Bias Management in Time-Changing Data Streams.- Transfer of Metaknowledge Across Tasks.- Composition of Complex Systems: Role of Domain-Specific Metaknowledge.

From the reviews:

"There are many techniques available for machine learning from data ... . the problem is: given a set of data, which of the learning systems should one use? The goal of this book is to initiate a study of this problem. ... The mixture of detailed description and overview is well managed. The reader is able to see how the authors' ideas and work fit into a larger framework. Graduate students looking for thesis topics should read this book." (J. P. E. Hodgson, ACM Computing Reviews, May, 2009)

Erscheint lt. Verlag 26.11.2008
Reihe/Serie Cognitive Technologies
Zusatzinfo XI, 176 p. 53 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 466 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte algorithms • Artificial Intelligence • Complex System • Data Mining • Dom • Intelligence • Knowledge • Knowledge Transfer • learning • machine learning • Maschinelles Lernen • Metakognition • Metalearning • Pattern classification • Statistical Learning
ISBN-10 3-540-73262-4 / 3540732624
ISBN-13 978-3-540-73262-4 / 9783540732624
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90