Finite von Neumann Algebras and Masas - Allan Sinclair, Roger Smith

Finite von Neumann Algebras and Masas

Buch | Softcover
410 Seiten
2008
Cambridge University Press (Verlag)
978-0-521-71919-3 (ISBN)
98,50 inkl. MwSt
Providing an introductory yet thorough account of the methods that underlie the theory of subalgebras of finite von Neumann algebras, this book contains a substantial amount of current research material and is ideal for those studying operator algebras. All proofs are given in considerable detail.
A thorough account of the methods that underlie the theory of subalgebras of finite von Neumann algebras, this book contains a substantial amount of current research material and is ideal for those studying operator algebras. The conditional expectation, basic construction and perturbations within a finite von Neumann algebra with a fixed faithful normal trace are discussed in detail. The general theory of maximal abelian self-adjoint subalgebras (masas) of separable II1 factors is presented with illustrative examples derived from group von Neumann algebras. The theory of singular masas and Sorin Popa's methods of constructing singular and semi-regular masas in general separable II1 factor are explored. Appendices cover the ultrapower of a II1 factor and the properties of unbounded operators required for perturbation results. Proofs are given in considerable detail and standard basic examples are provided, making the book understandable to postgraduates with basic knowledge of von Neumann algebra theory.

Allan M. Sinclair is a Professor Emeritus in the School of Mathematics at the University of Edinburgh. Roger R. Smith is a Professor in the Department of Mathematics at Texas A&M University.

General introduction; 1. Masas in B(H); 2. Finite von Neumann algebras; 3. The basic construction; 4. Projections and partial isometries; 5. Normalisers, orthogonality, and distances; 6. The Pukánszky invariant; 7. Operators in L; 8. Perturbations; 9. General perturbations; 10. Singular masas; 11. Existence of special masas; 12. Irreducible hyperfinite subfactors; 13. Maximal injective subalgebras; 14. Masas in non-separable factors; 15. Singly generated II1 factors; Appendix A. The ultrapower and property Γ; Appendix B. Unbounded operators; Appendix C. The trace revisited; Index.

Erscheint lt. Verlag 26.6.2008
Reihe/Serie London Mathematical Society Lecture Note Series
Verlagsort Cambridge
Sprache englisch
Maße 151 x 227 mm
Gewicht 560 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-521-71919-4 / 0521719194
ISBN-13 978-0-521-71919-3 / 9780521719193
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich