Elliptic Curves and Big Galois Representations - Daniel Delbourgo

Elliptic Curves and Big Galois Representations

Buch | Softcover
288 Seiten
2008
Cambridge University Press (Verlag)
978-0-521-72866-9 (ISBN)
84,75 inkl. MwSt
The arithmetic of modular forms and elliptic curves is a central topic in modern number theory, and both graduate students and professional number theorists will find much to interest them in this book. The results proved here have particular relevance to the 'ordinary component' of the Birch and Swinnerton-Dyer formula.
The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula. Three main steps are outlined: the first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. Finiteness results for big Selmer groups are then established. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture. As the first book on the subject, the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases.

Daniel Delbourgo is Senior Lecturer in the School of Mathematical Sciences at Monash University in Australia.

Introduction; List of notations; 1. Background; 2. p-adic L-functions and Zeta-elements; 3. Cyclotomic deformations of modular symbols; 4. A user's guide to Hida theory; 5. Crystalline weight deformations; 6. Super Zeta-elements; 7. Vertical and half-twisted arithmetic; 8. Diamond-Euler characteristics: the local case; 9. Diamond-Euler characteristics: the global case; 10. Two-variable Iwasawa theory of elliptic curves; A. The primitivity of Zeta elements; B. Specialising the universal path vector; C. The weight-variable control theorem; Bibliography.

Erscheint lt. Verlag 31.7.2008
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises; 1 Tables, unspecified; 70 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 153 x 227 mm
Gewicht 410 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-521-72866-5 / 0521728665
ISBN-13 978-0-521-72866-9 / 9780521728669
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00