Groups as Galois Groups
An Introduction
Seiten
2008
Cambridge University Press (Verlag)
978-0-521-06503-0 (ISBN)
Cambridge University Press (Verlag)
978-0-521-06503-0 (ISBN)
The goal of this book is to lead the reader to an understanding of recent results on the Inverse Galois Problem. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory.
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realisation of groups as Galois groups. The second part presents more advanced topics, such as braid group action and moduli spaces for covers of the Riemann sphere, GAR- and GAL- realizations, and patching over complete valued fields. Graduate students and mathematicians from other areas (especially group theory) will find this an excellent introduction to a fascinating field.
This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realisation of groups as Galois groups. The second part presents more advanced topics, such as braid group action and moduli spaces for covers of the Riemann sphere, GAR- and GAL- realizations, and patching over complete valued fields. Graduate students and mathematicians from other areas (especially group theory) will find this an excellent introduction to a fascinating field.
Part 1. The Basic Rigidity Criteria: 1. Hilbert's irreducibility theorem; 2. Finite Galois extensions of C (x); 3. Descent of base field and the rigidity criterion; 4. Covering spaces and the fundamental group; 5. Riemann surfaces and their functional fields; 6. The analytic version of Riemann's existence theorem; Part II. Further Directions: 7. The descent from C to k; 8. Embedding problems: braiding action and weak rigidity; Moduli spaces for covers of the Riemann sphere; Patching over complete valued fields.
Erscheint lt. Verlag | 12.6.2008 |
---|---|
Reihe/Serie | Cambridge Studies in Advanced Mathematics |
Zusatzinfo | 6 Line drawings, unspecified |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 150 x 229 mm |
Gewicht | 396 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 0-521-06503-8 / 0521065038 |
ISBN-13 | 978-0-521-06503-0 / 9780521065030 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €