Developments and Trends in Infinite-Dimensional Lie Theory
Birkhauser Boston Inc (Verlag)
978-0-8176-4740-7 (ISBN)
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups.
Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac–Moody superalgebras.
The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups.
The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach–Lie–Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups.
Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.
Preface.- Part A: Infinite-Dimensional Lie (Super-)Algebras.- Isotopy for Extended Affine Lie Algebras and Lie Tori.- Remarks on the Isotriviality of Multiloop Algebras.- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras – A Survey.- Tensor Representations of Classical Locally Finite Lie Algebras.- Lie Algebras, Vertex Algebras, and Automorphic Forms.- Kac–Moody Superalgebras and Integrability.- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups.- Jordan Structures and Non-Associative Geometry.- Direct Limits of Infinite-Dimensional Lie Groups.- Lie Groups of Bundle Automorphisms and Their Extensions.- Gerbes and Lie Groups.- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups.- Heat Kernel Measures and Critical Limits.- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory.- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces.- Index.
Reihe/Serie | Progress in Mathematics ; 288 |
---|---|
Zusatzinfo | 9 Illustrations, black and white; VIII, 492 p. 9 illus. |
Verlagsort | Secaucus |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8176-4740-6 / 0817647406 |
ISBN-13 | 978-0-8176-4740-7 / 9780817647407 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich