Beginning Partial Differential Equations - Peter V. O'Neil

Beginning Partial Differential Equations

(Autor)

Buch | Hardcover
496 Seiten
2008 | 2nd Revised edition
Wiley-Blackwell (Verlag)
978-0-470-13390-3 (ISBN)
97,58 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book provides a challenging yet accessible introduction to partial differential equations for advanced undergraduate and beginning graduate students. It provides a solid introduction to the topic, particularly methods of solution based on characteristics and separation of variables, as well as Fourier series, integrals, and transforms.
A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addressing more specialized topics and applications. Maintaining the hallmarks of the previous edition, the book begins with first-order linear and quasi-linear PDEs and the role of characteristics in the existence and uniqueness of solutions. Canonical forms are discussed for the linear second-order equation, along with the Cauchy problem, existence and uniqueness of solutions, and characteristics as carriers of discontinuities in solutions.
Fourier series, integrals, and transforms are followed by their rigorous application to wave and diffusion equations as well as to Dirichlet and Neumann problems. In addition, solutions are viewed through physical interpretations of PDEs. The book concludes with a transition to more advanced topics, including the proof of an existence theorem for the Dirichlet problem and an introduction to distributions. Additional features of the Second Edition include solutions by both general eigenfunction expansions and numerical methods. Explicit solutions of Burger's equation, the telegraph equation (with an asymptotic analysis of the solution), and Poisson's equation are provided. A historical sketch of the field of PDEs and an extensive section with solutions to selected problems are also included. Beginning Partial Differential Equations, Second Edition is an excellent book for advanced undergraduate- and beginning graduate-level courses in mathematics, science, and engineering.

Peter V. O'Neil, PhD, is Professor Emeritus in the Department of Mathematics at The University of Alabama at Birmingham. Dr. O'Neil has over forty years of academic experience and is the recipient of the Lester R. Ford Award from the Mathematical Association of America. He is a member of the American Mathematical Society, the Society for Industrial and Applied Mathematics, and the American Association for the Advancement of Science.

1. First Order Equations. Notation and Terminology. The Linear First Order Equation. The Significance of Characteristics. The Quasi-Linear Equation. 2. Linear Second Order Equations. Classification. The Hyperbolic Canonical Form. The Parabolic Canonical Form. The Elliptic Canonical Form. Some Equations of Mathematical Physics. The Second Order Cauchy Problem. Characteristics and the Cauchy Problem. Characteristics As Carriers of Discontinuities. 3. Elements of Fourier Analysis. Why Fourier Series? The Fourier Series of a Function. Convergence of Fourier Series. Sine and Cosine Expansions. The Fourier Integral. The Fourier Transform. Convolution. Fourier Sine and Cosine Transforms. 4. The Wave Equation. The Cauchy Problem and d'Alembert's Solution. d'Alembert's Solution As a Sum of Waves. The Characteristic Triangle. The Wave Equation on a Half-Line. A Problem on a Half-Line With Moving End. A Nonhomogeneous Problem on the Real Line. A General Problem on a Closed Interval. Fourier Series Solutions on a Closed Interval. A Nonhomogeneous Problem on a Closed Interval. The Cauchy Problem by Fourier Integral. A Wave Equation in Two Space Dimensions. The Kirchhoff/Poisson Solution. Hadamard's Method of Descent. 5. The Heat Equation. The Cauchy Problem and Initial Conditions. The Weak Maximum Principle. Solutions on Bounded Intervals. The Heat Equation on the Real Line. The Heat Equation on the Half-Line. The Debate Over the Age of the Earth. The Nonhomogeneous Heat Equation. The Heat Equation In Several Space Variables. 6. Dirichlet and Neumann Problems. The Setting of the Problems. Some Harmonic Functions. Representation Theorems. Two Properties of Harmonic Functions. Is the Dirichlet Problem Well-Posed? Dirichlet Problem for a Rectangle. 7. Existence Theorems. A Classical Existence Theorem. A Hilbert Space Approach. Distributions and an Existence Theorem. 8. Additional Topics. Solutions by Eigenfunction Expansions. Numerical Approximations of Solutions. Burger's Equation. The Telegraph Equation. Poisson's Equation. 9. End Materials. Historical Notes. Glossary. Answers to Selected Exercises.

Erscheint lt. Verlag 21.4.2008
Reihe/Serie Pure and Applied Mathematics: A Wiley Series of Texts, Monographs, and Tracts ; Vol.1
Verlagsort Hoboken
Sprache englisch
Maße 164 x 242 mm
Gewicht 832 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-470-13390-2 / 0470133902
ISBN-13 978-0-470-13390-3 / 9780470133903
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99