Student Solutions Manual to accompany Simulation and the Monte Carlo Method - Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev, Reuven Y. Rubinstein

Student Solutions Manual to accompany Simulation and the Monte Carlo Method

Buch | Softcover
208 Seiten
2008 | 2nd edition
Wiley-Interscience (Verlag)
978-0-470-25879-8 (ISBN)
37,40 inkl. MwSt
Explores the major topics in Monte Carlo simulation. This title features the information that facilitates an understanding of problem solving across a wide array of subject areas, such as engineering, mathematics, and the physical and life sciences. It introduces the basic concepts of probability, Markov processes, and convex optimization.
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences.

The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including:

Markov Chain Monte Carlo

Variance reduction techniques such as the transform likelihood ratio method and the screening method

The score function method for sensitivity analysis

The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization

The cross-entropy method to rare events estimation and combinatorial optimization

Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method

An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs.

Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

 

Dirk P. Kroese, PhD, is Australian Professorial Fellow in Statistics at The University of Queensland. Dr. Kroese has more than seventy publications in such areas as stochastic modeling, randomized algorithms, computational statistics, and reliability. He is a pioneer of the cross-entropy method and the coauthor of Simulation and the Monte Carlo Method, Second Edition. Thomas Taimre, PhD, is a Postdoctoral Research Fellow at The University of Queensland. He currently focuses his research on Monte Carlo methods and simulation, from the theoretical foundations to performing computer implementations.

Preface. Acknolwedgments.

I: Problems.

1. Preliminaries.

2. Random Number, random Variable, and Stochastic Process Generation.

3. Simulatin of Discrete-Event Systems.

4. Stastical Analysis of Discrete-Event Systems.

5. Controlling the Variance.

6. Markov Chain Monte Carlo.

7. Sensitivity Analysis and Monte Carlo Optimization.

8. The Cross-Entropy Method.

9. Counting via Monte Carlo.

10. Appendix.

II: Solutions.

11. Prelimiaries.

12. Random Number, Random Variable, and Stochastic Process Generation.

13. Simulatin of Discrete-Event Systems.

14. Stastical Analysis of Discrete-Event Systems.

15. Controlling the Variance.

16. Markov Chain Monte Carlo.

17. Sensitivity Analysis and Monte Carlo Optimization.

18. The Cross-Entropy Method.

19. Counting via Monte Carlo.

20. Appendix.

Reihe/Serie Wiley Series in Probability and Statistics
Zusatzinfo Charts: 7 B&W, 0 Color; Drawings: 9 B&W, 0 Color; Graphs: 47 B&W, 0 Color
Sprache englisch
Maße 150 x 229 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 0-470-25879-9 / 0470258799
ISBN-13 978-0-470-25879-8 / 9780470258798
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99