q-Clan Geometries in Characteristic 2

Buch | Softcover
XIV, 166 Seiten
2007 | 2007
Springer Basel (Verlag)
978-3-7643-8507-1 (ISBN)

Lese- und Medienproben

q-Clan Geometries in Characteristic 2 - Ilaria Cardinali, Stanley E. Payne
58,84 inkl. MwSt

A q-clan with q a power of 2 is equivalent to a certain generalized quadrangle with a family of subquadrangles each associated with an oval in the Desarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry. The book gives a complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals are worked out completely.

q-Clans and Their Geometries.- The Fundamental Theorem.- Aut(GQ(C)).- The Cyclic q-Clans.- Applications to the Known Cyclic q-Clans.- The Subiaco Oval Stabilizers.- The Adelaide Oval Stabilizers.- The Payne q-Clans.- Other Good Stuff.

Erscheint lt. Verlag 16.8.2007
Reihe/Serie Frontiers in Mathematics
Zusatzinfo XIV, 166 p.
Verlagsort Basel
Sprache englisch
Maße 170 x 240 mm
Gewicht 368 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte automorphism group • Boundary element method • Character • Dimension • Discrete Geometry • fundamental theorem • geometries • Geometry • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Geometrie • object • Oval • Proof • Quadrangle • Theorem
ISBN-10 3-7643-8507-3 / 3764385073
ISBN-13 978-3-7643-8507-1 / 9783764385071
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95