q-Clan Geometries in Characteristic 2
Springer Basel (Verlag)
978-3-7643-8507-1 (ISBN)
A q-clan with q a power of 2 is equivalent to a certain generalized quadrangle with a family of subquadrangles each associated with an oval in the Desarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry. The book gives a complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals are worked out completely.
q-Clans and Their Geometries.- The Fundamental Theorem.- Aut(GQ(C)).- The Cyclic q-Clans.- Applications to the Known Cyclic q-Clans.- The Subiaco Oval Stabilizers.- The Adelaide Oval Stabilizers.- The Payne q-Clans.- Other Good Stuff.
Erscheint lt. Verlag | 16.8.2007 |
---|---|
Reihe/Serie | Frontiers in Mathematics |
Zusatzinfo | XIV, 166 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 368 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | automorphism group • Boundary element method • Character • Dimension • Discrete Geometry • fundamental theorem • geometries • Geometry • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Geometrie • object • Oval • Proof • Quadrangle • Theorem |
ISBN-10 | 3-7643-8507-3 / 3764385073 |
ISBN-13 | 978-3-7643-8507-1 / 9783764385071 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich