Algebraic Cycles and Motives: Volume 2 -

Algebraic Cycles and Motives: Volume 2

Jan Nagel, Chris Peters (Herausgeber)

Buch | Softcover
374 Seiten
2007
Cambridge University Press (Verlag)
978-0-521-70175-4 (ISBN)
68,55 inkl. MwSt
These two volumes provide a self-contained account of research on algebraic cycles and motives. Twenty-two contributions from leading figures survey the key research strands, including: Abel-Jacobi/regulator maps and normal functions; Voevodsky's triangulated category of mixed motives; conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups.
Algebraic geometry is a central subfield of mathematics in which the study of cycles is an important theme. Alexander Grothendieck taught that algebraic cycles should be considered from a motivic point of view and in recent years this topic has spurred a lot of activity. This book is one of two volumes that provide a self-contained account of the subject as it stands. Together, the two books contain twenty-two contributions from leading figures in the field which survey the key research strands and present interesting new results. Topics discussed include: the study of algebraic cycles using Abel-Jacobi/regulator maps and normal functions; motives (Voevodsky's triangulated category of mixed motives, finite-dimensional motives); the conjectures of Bloch-Beilinson and Murre on filtrations on Chow groups and Bloch's conjecture. Researchers and students in complex algebraic geometry and arithmetic geometry will find much of interest here.

Jan Nagel is a Lecturer at UFR de Mathématiques Pures et Appliquées, Université Lille 1. Chris Peters is a Professor at Institut Fourier, Université Grenoble 1.

Part II. Research Articles: 8. Beilinson's Hodge conjecture with coefficients M. Asakura and S. Saito; 9. On the splitting of the Bloch-Beilinson filtration A. Beauville; 10. Künneth projectors S. Bloch and H. Esnault; 11. The Brill-Noether curve of a stable bundle on a genus two curve S. Brivio and A. Verra; 12. On Tannaka duality for vector bundles on p-adic curves C. Deninger and A. Werner; 13. On finite-dimensional motives and Murre's conjecture U. Jannsen; 14. On the transcendental part of the motive of a surface B. Kahn, J. P. Murre and C. Pedrini; 15. A note on finite dimensional motives S. I. Kimura; 16. Real regulators on Milnor complexes, II J. D. Lewis; 17. Motives for Picard modular surfaces A. Miller, S. Müller-Stach, S. Wortmann, Y.-H.Yang, K. Zuo; 18. The regulator map for complete intersections J. Nagel; 19. Hodge number polynomials for nearby and vanishing cohomology C. Peters and J. Steenbrink; 20. Direct image of logarithmic complexes M. Saito; 21. Mordell-Weil lattices of certain elliptic K3's T. Shioda; 22. Motives from diffraction J. Stienstra.

Erscheint lt. Verlag 3.5.2007
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises; 6 Tables, unspecified; 5 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 610 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-521-70175-9 / 0521701759
ISBN-13 978-0-521-70175-4 / 9780521701754
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95