Lectures on Kähler Geometry - Andrei Moroianu

Lectures on Kähler Geometry

(Autor)

Buch | Hardcover
182 Seiten
2007
Cambridge University Press (Verlag)
978-0-521-86891-4 (ISBN)
153,35 inkl. MwSt
Kähler geometry is of substantial interest to both mathematicians and physicists and this graduate text provides a self-contained introduction to the subject. Topics discussed include complex manifolds and holomorphic vector bundles; Kähler manifolds and Hodge and Dolbeault theories; compact Kähler manifolds and a proof of the famous Kähler identities.
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.

Andrei Moroianu is a Researcher at CNRS and a Professor of Mathematics at Ecole Polytechnique.

Introduction; Part I. Basics on Differential Geometry: 1. Smooth manifolds; 2. Tensor fields on smooth manifolds; 3. The exterior derivative; 4. Principal and vector bundles; 5. Connections; 6. Riemannian manifolds; Part II. Complex and Hermitian Geometry: 7. Complex structures and holomorphic maps; 8. Holomorphic forms and vector fields; 9. Complex and holomorphic vector bundles; 10. Hermitian bundles; 11. Hermitian and Kähler metrics; 12. The curvature tensor of Kähler manifolds; 13. Examples of Kähler metrics; 14. Natural operators on Riemannian and Kähler manifolds; 15. Hodge and Dolbeault theory; Part III. Topics on Compact Kähler Manifolds: 16. Chern classes; 17. The Ricci form of Kähler manifolds; 18. The Calabi–Yau theorem; 19. Kähler–Einstein metrics; 20. Weitzenböck techniques; 21. The Hirzebruch–Riemann–Roch formula; 22. Further vanishing results; 23. Ricci–flat Kähler metrics; 24. Explicit examples of Calabi–Yau manifolds; Bibliography; Index.

Erscheint lt. Verlag 29.3.2007
Reihe/Serie London Mathematical Society Student Texts
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 440 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-521-86891-2 / 0521868912
ISBN-13 978-0-521-86891-4 / 9780521868914
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95