Blow-up Theory for Elliptic PDEs in Riemannian Geometry - Olivier Druet, Emmanuel Hebey, Frédéric Robert

Blow-up Theory for Elliptic PDEs in Riemannian Geometry

Buch | Softcover
224 Seiten
2004
Princeton University Press (Verlag)
978-0-691-11953-3 (ISBN)
97,25 inkl. MwSt
This work develops critical new ideas and methods for the analysis of elliptic PDEs on compact Riemannian manifolds, especially in the framework of the Yamabe equation, critical Sobolev embedding and blow-up techniques (asymptotic analysis).
Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrodinger operators on the left hand side and a critical nonlinearity on the right hand side. A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev space consisting of square integrable functions whose gradient is also square integrable. This splitting is known as the integral theory for blow-up. In this book, the authors develop the pointwise theory for blow-up. They introduce new ideas and methods that lead to sharp pointwise estimates. These estimates have important applications when dealing with sharp constant problems (a case where the energy is minimal) and compactness results (a case where the energy is arbitrarily large). The authors carefully and thoroughly describe pointwise behavior when the energy is arbitrary.
Intended to be as self-contained as possible, this accessible book will interest graduate students and researchers in a range of mathematical fields.

Olivier Druet is Researcher at CNRS, Ecole Normale Superieure de Lyon. Emmanuel Hebey is Professor at Universite de Cergy-Pontoise. Frederic Robert is Associate Professor at Universite de Nice Sophia-Antipolis.

Preface vii Chapter 1. Background Material 1 1.1 Riemannian Geometry 1 1.2 Basics in Nonlinear Analysis 7 Chapter 2. The Model Equations 13 2.1 Palais-Smale Sequences 14 2.2 Strong Solutions of Minimal Energy 17 2.3 Strong Solutions of High Energies 19 2.4 The Case of the Sphere 23 Chapter 3. Blow-up Theory in Sobolev Spaces 25 3.1 The H 2/1-Decomposition for Palais-Smale Sequences 26 3.2 Subtracting a Bubble and Nonnegative Solutions 32 3.3 The De Giorgi-Nash-Moser Iterative Scheme for Strong Solutions 45 Chapter 4. Exhaustion and Weak Pointwise Estimates 51 4.1 Weak Pointwise Estimates 52 4.2 Exhaustion of Blow-up Points 54 Chapter 5. Asymptotics When the Energy Is of Minimal Type 67 5.1 Strong Convergence and Blow-up 68 5.2 Sharp Pointwise Estimates 72 Chapter 6. Asymptotics When the Energy Is Arbitrary 83 6.1 A Fundamental Estimate: 1 88 6.2 A Fundamental Estimate: 2 143 6.3 Asymptotic Behavior 182 Appendix A. The Green's Function on Compact Manifolds 201 Appendix B. Coercivity Is a Necessary Condition 209 Bibliography 213

Erscheint lt. Verlag 9.5.2004
Reihe/Serie Mathematical Notes
Verlagsort New Jersey
Sprache englisch
Maße 152 x 235 mm
Gewicht 312 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-691-11953-8 / 0691119538
ISBN-13 978-0-691-11953-3 / 9780691119533
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich